
DB-Risk: The Game of Global Database Placement

[Demonstration proposal]

Victor Zakhary Faisal Nawab Divyakant Agrawal Amr El Abbadi
Department of Computer Science

University of California, Santa Barbara
Santa Barbara, CA 93106

{victorzakhary,nawab,agrawal,amr}@cs.ucsb.com

ABSTRACT
Geo-replication is the process of maintaining copies of data
at geographically dispersed datacenters for better availabil-
ity and fault-tolerance. The distinguishing characteristic of
geo-replication is the large wide-area latency between data-
centers that varies widely depending on the location of the
datacenters. Thus, choosing which datacenters to deploy a
cloud application has a direct impact on the observable re-
sponse time. We propose an optimization framework that
automatically derives a geo-replication placement plan with
the objective of minimizing latency. By running the opti-
mization framework on real placement scenarios, we learn
a set of placement optimizations for geo-replication. Some
of these optimizations are surprising while others are in ret-
rospect straight-forward. In this demonstration, we high-
light the geo-replication placement optimizations through
the DB-Risk game. DB-Risk invites players to create differ-
ent placement scenarios while experimenting with the pro-
posed optimizations. The placements created by the players
are tested on real cloud deployments.

Keywords
Geo-replication, transactions, placement

1. INTRODUCTION
Cloud applications strive for a 24/7 service with fast

response time. Geo-replication has become necessary to
achieve these objectives; a 24/7 service might be disrupted
when datacenter-scale outages occur. Geo-replication helps
alleviate this disruption by allowing requests to be directed
only to operating datacenters. Fast response time is a chal-
lenge when the cloud application’s user base is dispersed
across the world. Geo-replication brings data closer to the
user and increases the level of read availability.

When geo-replicating a cloud application, the system
administrator is faced with an important design decision:
at which datacenters should the data be placed? Cloud

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2899405

providers offer more than a few datacenters for deploy-
ment (e.g., Amazon AWS hosts applications in 10 data-
centers around the world each with multiple availability
zones). With multiple cloud providers, the possibilities for
geo-replicated deployments are the subsets of tens of data-
centers. The placement decision affects many performance
characteristics.

In this work, we focus on the effect of geo-replication
placement on the response time for transactional workloads
with serializability as the correctness guarantee. The re-
sponse time of transactions on geo-replicated data is directly
affected by the deployment topology, which we define as the
relative locations of datacenters and the communication la-
tencies between them. The topology affects response time
differently for different replication protocols. Our study fo-
cuses on majority protocols, but can be applied on central-
ized protocols, coordination-free techniques [2], and Helios
[3]; a recent geo-replication proposal.

We propose an optimization framework to make geo-
replication placement decisions. The optimization frame-
work, framework for short, constructs a model of the system.
The model includes the topology, workload, and user distri-
bution. Then, the model is used in an optimization prob-
lem formulation with the objective of minimizing transac-
tion latency in addition to adhering to fault-tolerance and
quality-of-service guarantees.

The framework has been built to allow breaking the rules
of the replication protocols. Thus, the framework could yield
outcomes with“tweaks” that are not part of the original pro-
tocol. Sometimes these tweaks are not feasible. But other
times, these tweaks are viable optimizations to the origi-
nal protocol that will result in better transaction latency.
Some of the viable optimizations were more common than
others, and upon closer examination it becomes clear that
they exemplify a set of best practices, or optimizations, for
geo-replication placement. We present three of the optimiza-
tions that we have found to be rewarding in geo-replication.
The first optimization is quite novel while the other two
optimizations were introduced before. The three optimiza-
tions, altogether, achieve in some deployments the minimum
transaction latency.

We propose the game DB-Risk1 to demonstrate the chal-
lenges in geo-replication placement, and showcase our frame-
work and geo-replication placement optimizations. The
players are presented with a geo-replication environment
with clients distributed globally. Players then compete by

1The game and name are inspired from the famous game
“Risk: The Game of Global Domination”.

placing their replicas at datacenters with the objective of
minimizing the transaction response time for clients. The
game proceeds in multiple rounds with the opportunity to
apply a subset of the geo-replication optimizations to lower
the response time. The winner is the player who places
replicas to achieve the lowest response time. DB-Risk is
augmented with our framework to compare the winner’s
placement to the calculated optimal placement. We also
incorporate a real deployment on Amazon AWS to validate
the performance of the chosen placements.

2. BACKGROUND
System model. Our model of geo-replication consists of

a topology of datacenters and clients executing transactional
workload. Data is fully replicated to a subset of datacenters.
Users issue transactions that consist of read and write oper-
ations. Each client execute transactions back-to-back. The
execution of transactions depends on the replication pro-
tocol. We focus in this work on majority based protocols.
Next is a description of the variation we use for the majority
protocol.

Majority. We adopt a variant of the majority protocol.
A client executes a transaction by performing the reads and
buffering the writes. Read requests are sent to a major-
ity of datacenters. The highest version read is used. After
executing reads and writes a vote request is sent to data-
centers. The vote request consists of the read versions and
the buffered write operations. Each datacenter, upon receiv-
ing a vote request, attempts to lock objects that are being
written. Additionally, it verifies that the read versions were
not overwritten. If both are successful, the datacenter sends
back a positive vote. Otherwise, a negative vote is sent. The
client commits the transaction if a majority of positive votes
is received and aborts the transaction otherwise. The client
sends the decision to all replicas. Once a majority acknowl-
edges the receipt of the decision, the transaction terminates.
The transaction latency is the time from the beginning of
executing operations until terminating the transaction. We
define the commit latency as the time spent committing the
transaction, which is equivalent to the transaction latency
without the time spent reading the data values.

Cost of coordination. A central concern of this work
is optimizing transaction latency by finding the best replica
placement. In an earlier work, we have found that the sum
of transaction latencies at any two datacenters cannot be
smaller than the RTT between these datacenters [3].

Related work. Geo-replication and data placement
are areas that have undergone extensive research. Re-
cent works study the problem of data placement for geo-
replication [1, 4, 5, 8, 9]. Spanstore [8] is the closest work to
our optimization framework. It tackles the data placement
problem in geo-replication using an optimization formula-
tion. Ping et. al. [4, 5] propose the use of a utility func-
tion to derive a placement that balances between speed and
availability. Volley [1] analyzes usage logs and leverages an
optimization formulation to place data partitions. Unlike
our optimization framework, these works do not support
a multi-access transactional workload with strong consis-
tency. Sharov [6] optimizes for transactional workloads us-
ing leader based protocols. The optimization focuses on the
leader placement, the leader and replica roles, and replica
location, roles, and the leader. A transactional workload
requires more complex coordination between replicas to de-

tect conflicts. Our framework is designed to engage in the
design decisions the optimization techniques to be used in
the majority based replication protocols, and illuminates un-
intuitive optimizations to achieve a better performance.

3. GEO-REPLICATION PLACEMENT
Where copies of data are placed is a critical design decision

that affects, among others, the performance of the applica-
tion. It turns out that it is not straight forward to devise
a placement strategy on geo-replicated data. The optimal
placement depends on the workload patterns, user base, in
addition to monetary and even geo-political considerations.
However, even in the simple case of a uniform workload with
no restrictions, monetary or otherwise, the placement prob-
lem is still complex. The reason of this complexity stems
from two characteristics: (1) we consider a transactional
workload, which require replicas to coordinate to detect con-
flicts. (2) The topology of replicas in geo-replication is more
complex than traditional replication; each link in the topol-
ogy could have a significantly different communication la-
tency. These two characteristics decides which replication
protocol performs better and should be chosen. Even if we
have a finite set of replication protocols to consider (we focus
here on majority protocols), each protocol comes with many
variations. The large design space makes it difficult to know
the combination of a placement strategy and replication pro-
tocol variations that will lead to the best performance.

Optimization Framework
To address the large space of placements and replication pro-
tocol variations, we developed an optimization framework.
The framework takes as input the replicas network topol-
ogy, workload parameters, and availability constraints. It
searches through the space of placements and protocol vari-
ations and chooses the ones that minimizes transaction’s re-
sponse latency. The straight-forward way to search through
the possible space of replication protocol variations is to
hard-code as many of them as possible. However, hard-
coding restricts the space of possible variations. What we
do instead is only hard-code a single variation of each family
of protocols. Then, we intentionally allow the optimization
framework to break some of the protocol’s behavior. It is
possible that the resulting “tweaks” are not feasible, leading
to violation of correctness. But it is also possible that we ar-
rive to the right tweaks that will optimize the performance
of the replication protocol. In our study, we have repeat-
edly seen a set of optimizations reoccur. Some of them are
straight-forward and some of them are surprising. Next,
we summarize the derived placement optimizations for geo-
replicated systems.

Placement Optimizations
Here we summarize the geo-replication placement optimiza-
tions that we learned from the optimization framework. For
the rest of this discussion we assume that data is fully repli-
cated.

Commit hand-off. In a fully-replicated system, a client
accessing data typically sends the commit request to the lo-
cal, or closest, replica. Our optimization framework shows
that this is not always the best practice in a geo-replicated
environment; it is sometimes better to send the commit re-
quest to a datacenter other than the local one. For ex-
ample, consider Figure 1 that shows an example of geo-

O

C
V

66ms

78ms

19ms

I

175ms

84ms

175ms

Figure 1: An example of replicating to four data-
centers in Oregon (O), Virginia (V), California (C),
and Ireland (I)

replication: four datacenters in Oregon (O), Virginia (V),
California (C), and Ireland (I). The communication Round-
Trip Times (RTTs) between the datacenters are shown in
the figure. The RTTs between Ireland and the other dat-
acenters are significantly higher than the remaining RTTs.
Assume that a majority protocol is used to commit trans-
actions in this scenario. The commit latency of a majority
protocol is two RTTs to the closest majority. Thus, the
commit latency of clients in Oregon is 132ms, in California
and Virginia is 156ms, and in Ireland is 350ms.

The large latency of clients in Ireland is due to the com-
mon convention that driving the transaction commitment
from the local datacenter is the best practice. However, run-
ning this scenario in our optimization framework shows that
this convention is not always true. In fact, clients in Ireland
are in a better position sending their commit requests to Vir-
ginia. Committing a transaction in Virginia takes 156ms.
And sending the request from Ireland to Virginia and wait-
ing for the decision to be sent back takes 84ms. This means
that the commit latency becomes the sum of the two laten-
cies, which is equal to 240ms. Compared to the original
commit latency, this is a 31% improvement in commit la-
tency of clients in Ireland. An insight from the optimization
framework led to an improvement in commit latency with a
simple change to the original protocol.

Passive replicas. Our second optimization is a byprod-
uct of the commit hand-off optimization. In the scenario in
Figure 1, when applying the hand-off optimization, clients
at Ireland send their commit requests to Virginia. Clients in
other datacenters send commit requests to their local repli-
cas. This means that the replica at Ireland does not receive
commit requests. With this knowledge, it is easy to observe
that the demand placed on Ireland is lower than the other
datacenters. For most of the time, Ireland will only serve
read requests and receive the outcome of transactions and
not drive the commitment of transactions. Thus, less re-
sources need to be provisioned in Ireland and more resources
need to be provisioned elsewhere.

When the framework recommends the hand-off optimiza-
tion, it is sometimes accompanied by an interesting side ef-
fect. The side effect is that the replica that is not receiving
commit requests becomes a passive replica. A passive replica
is a replica that serves read requests but does not engage in
the commit protocol. This means that it does not become
part of the majority protocol, but more like a cache of data
used for reading. In the example in Figure 1, this means that
the majority protocol will involve getting votes only from

Oregon, Virginia, and California. The number of replicas
to constitute a majority has thus been lowered from three
replicas when four datacenters were involved to two replicas
now that only three replicas are involved. This makes the
commit latency lower, since each replica needs to get votes
from only one other replica. This makes the commit latency
of Oregon and California 38ms, of Virginia 132ms, and of
Ireland 216ms. Making Ireland a passive replica reduced the
average latency by 39%. It is important to note that this
optimization is allowed in this scenario only if the system is
required to tolerate only a single datacenter failure.

Optimistic reading. A conventional majority protocol
reads from a majority of replicas to ensure that the most
recent version is read. However, it is possible to optimisti-
cally read from the local replica only, and then validate the
read in a majority of replicas in the commit phase [7]. The
choice of whether to read optimistically or from a major-
ity is controlled by a trade-off between the latency of read
operations and contention. An optimistic read lowers the
read latency but it increases contention because the ver-
sion at the local replica might be stale. Reading from a
majority requires a larger latency but ensures getting the
most recent version. Running our optimization framework
on various geo-replication scenarios reveals that optimistic
reads are more favorable. It turns out that due to the large
communication latencies between datacenters, a read from a
majority is susceptible to a close contention level to the level
when reading optimistically. Thus, there was no significant
benefit in reading from a majority compared to reading op-
timistically, while an optimistic read enjoyed the benefit of
a low latency.

4. THE DB-RISK GAME
We propose DB-Risk, a game to motivate thinking about

the challenges of data placement in geo-replicated environ-
ments. It also showcases the capabilities of our optimization
framework and the derived geo-replication placement opti-
mizations. The game is designed to be played by two players
to introduce a competitive element. The game assumes a
majority protocol is used. An actual deployment of the ma-
jority protocol and placement optimizations are deployed on
Amazon AWS to validate the players choices.

Summary. In DB-Risk, players place replicas in data-
centers around the world with the aim of minimizing the
transaction latency. The players also choose from the set
of placement optimizations to enhance the transaction la-
tency. The winner is the player with a placement and set
of optimizations that achieve the lowest average transaction
latency.

Rules. The game begins by showing a map similar to the
map shown in Figure 2. The map shows a datacenter icon for
each location that a player can choose. These datacenter lo-
cations correspond to actual datacenter locations of Amazon
AWS. Players take turns choosing datacenters. Each data-
center can be chosen only once; a datacenter cannot host
both players. The game proceeds in three rounds. The first
round starts after placing data on datacenters. The average
latency is calculated and displayed for each player. Before
the second round, the players are given the opportunity to
choose one advantage card. There are four advantage cards:
three correspond to the placement optimizations and one
card allows coordination-free execution of transactions [2].
The coordination-free card affects a randomly assigned per-

Figure 2: Two players place their application in datacenters and choose optimizations to win with the lowest
average transaction latency

centage of the transactions. Then, the new average transac-
tion latency is shown for both players. The third round is
identical to the second round. The players choose another
placement optimization and the final average transaction la-
tencies are shown. The winner of the game is the player with
the lower average transaction latency.

Comparisons. After announcing the winner, the opti-
mization framework shows the optimal placement and the
set of placement optimizations used to minimize transaction
latency. In addition, the optimization framework also calcu-
lates the optimal placement for the centralized protocol and
Helios (lower-bound latency) [3], and shows the transaction
latency attained by them.

Validation. During the game, the transaction latencies
are calculated using the system model in the optimization
framework. But, for each game, the winning deployment is
validated on a real deployment of the majority protocol and
placement optimizations on Amazon AWS.

5. CONCLUSION
In geo-replication, the location of replicas plays a signifi-

cant role in performance. We have developed an optimiza-
tion framework that derives the optimal placement of repli-
cas. Unlike prior work, our optimization framework models
a transactional workload. Additionally, our framework is
designed to engage in the design decisions of the replica-
tion protocol. Geo-replication placement optimizations are
derived using the optimization framework. Most surprising
is the hand-off optimization, which shows that sometimes
it is rewarding to send commit requests to a farther data-
center rather than the local one. We proposed DB-Risk, a
game to motivate the placement problem and to showcase
our optimization framework and placement optimizations.

6. ACKNOWLEDGMENTS
This work is partially supported by NSF Grants 1018637,

1528178, and 1442966.

7. REFERENCES
[1] S. Agarwal et al. Volley: Automated data placement for

geo-distributed cloud services. In NSDI, 2010.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M.
Hellerstein, and I. Stoica. Coordination avoidance in
database systems. In VLDB, 2014.

[3] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi.
Minimizing commit latency of transactions in
geo-replicated data stores. In SIGMOD, 2015.

[4] F. Ping, J.-H. Hwang, X. Li, C. McConnell, and
R. Vabbalareddy. Wide area placement of data replicas
for fast and highly available data access. In the
International Workshop on Data-intensive Distributed
Computing (DIDC), 2011.

[5] F. Ping, X. Li, C. McConnell, R. Vabbalareddy, and
J.-H. Hwang. Towards optimal data replication across
data centers. In the Distributed Computing Systems
Workshops (ICDCSW), 2011.

[6] A. Sharov, A. Shraer, A. Merchant, and M. Stokely.
Take me to your leader!: online optimization of
distributed storage configurations. Proceedings of the
VLDB Endowment, 8(12):1490–1501, 2015.

[7] R. H. Thomas. A majority consensus approach to
concurrency control for multiple copy databases. ACM
TODS, 1979.

[8] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett,
and H. V. Madhyastha. Spanstore: Cost-effective
geo-replicated storage spanning multiple cloud services.
In SOSP, 2013.

[9] Z. Ye, S. Li, and X. Zhou. Gcplace: Geo-cloud based
correlation aware data replica placement. In Symposium
on Applied Computing, 2013.

