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ABSTRACT
Machine learning techniques are essential to extracting knowl-
edge from data. The volume of data encourages the use of
parallelization techniques to extract knowledge faster. How-
ever, schemes to parallelize machine learning tasks face the
trade-off between obeying strict consistency constraints and
performance. Existing consistency schemes require expen-
sive coordination between worker threads to detect conflicts,
leading to poor performance. In this work, we consider the
problem of improving the performance of multi-core machine
learning while preserving strong consistency guarantees.

We propose Conflict Order Planning (COP), a consistency
scheme that exploits special properties of machine learning
workloads to reduce the overhead of coordination. What is
special about machine learning workloads is that the dataset
is often known prior to the execution of the machine learning
algorithm and is reused multiple times with different settings.
We exploit this prior knowledge of the dataset to plan a
partial order for concurrent execution. This planning reduces
the cost of consistency significantly because it allows the use
of a light-weight conflict detection operation that we call
ReadWait. We demonstrate the use of COP on a Stochastic
Gradient Descent algorithm for Support Vector Machines
and observe better scalability and a speedup factor between
2-6x when compared to other consistency schemes.

1. INTRODUCTION
The increasingly larger sizes of machine learning datasets

have motivated the study of scalable parallel and distributed
machine learning algorithms [7, 16, 20–22, 24, 25, 27]. The
key to a scalable computation is the efficient management
of coordination between processing workers, or workers for
short. Some machine learning algorithms require only a small
amount of coordination between workers making them easily
scalable. However, the vast majority of machine learning
algorithms are studied and developed in the serial setting,
which makes it arduous to distribute these serial-based al-
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gorithms while maintaining the algorithm’s behavior and
goals.

Distributing serial-based algorithms may be performed
by encapsulating the algorithm within existing parallel and
distributed computation frameworks. These frameworks are
oblivious to the actual computation. Thus, the machine learn-
ing algorithms may be incorporated as-is without redesign.
In this paper, we consider a framework of transactions [3, 10]
for parallel multi-core execution of machine learning algo-
rithms. A transaction may represent the processing of an
iteration of the machine learning algorithm where workers
run transactions in parallel. Serializability is the correctness
criterion for transactions that ensures that the outcome of a
parallel computation is equivalent to some serial execution.
To guarantee serializability, transactions need to coordinate
via consistency schemes such as locking [8] and optimistic
concurrency control (OCC) [15].

Recently, coordination-free approaches to parallelizing ma-
chine learning algorithms have been proposed [7, 24, 25].
In these approaches, workers do not coordinate with each
other thus improving performance significantly compared to
methods like locking and OCC. Although these techniques
were very successful for many machine learning problems,
there is a concern that the coordination-free approach leads
to “requiring potentially complex analysis to prove [paral-
lel] algorithm correctness” [21]. When a machine learning
algorithm, A, is developed, it is accompanied by mathe-
matical proofs to verify its theoretical properties, such as
convergence. These proofs are typically on the serial-based
algorithm. A coordination-free parallelization of a proven
serial algorithm, denoted ϕcf (A), is not guaranteed to have
the same theoretical properties as the serial algorithm A.
This is due to overwrites and inconsistency that makes the
outcome of ϕcf (A) different from A. Thus, guaranteeing
the theoretical properties requires a separate mathematical
analysis of ϕcf (A), that although possible [6, 25], can be com-
plex. Additionally, the theoretical analysis might reveal the
need for changes to the algorithm to preserve its theoretical
guarantees in the parallel setting [25].

Running parallel machine learning algorithms in a seri-
alizable, transactional framework bypasses the need for an
additional theoretical analysis of the correctness of paral-
lelization. This is because a serializable parallel execution,
denoted ϕSR(A), is equivalent to some serial execution of
A, and thus preserves its theoretical properties. We will
call parallelizing with serializability, the universal approach
because serial machine learning algorithms are applied to it
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without the need of additional theoretical analysis or changes
to the original algorithm.

In this work, we focus on the universal approach of paral-
lelizing machine learning algorithms with serializable trans-
actions. Consistency schemes like locking [8, 11], OCC [25],
and others [2] incur a signi�cant performance overhead. Tra-
ditional serializability schemes were designed mainly for
database workloads. Database workloads are typically arbi-
trary, unrepeatable units of work that are unknown to the
database engine prior to execution. This is not the case for
machine learning workloads. Machine learning tasks are well
de�ned. Most machine learning algorithms apply a single
iterative task repeatedly to the dataset. Also, the dataset
(i.e., the machine learning workload) is typically processed
multiple times within the same run of the algorithm, and
is potentially used for di�erent runs with di�erent machine
learning algorithms. Generally, machine learning datasets
are also known, in o�ine settings, prior to the experiments.
These properties of machine learning workloads make it fea-
sible to plan execution. We call these the dataset knowledge
properties.

We propose Conict Order Planning (COP) for parallel
machine learning algorithms. COP ensures a serializable
execution that preserves the theoretical guarantees of the
serial machine learning algorithm. It leverages the dataset
knowledge properties of machine learning workloads to plan
a partial order for concurrent execution that is serializable.
It annotates each transaction (i.e., a machine learning itera-
tion) with information about its dependencies according to
the planned partial order. At execution time, these planned
dependencies must be enforced. Enforcing a planned de-
pendency is done by validating that an operation reads or
overwrites the correct version according to the plan. This
validation is done using a light-weight operation that we
call ReadWait. This operation is essentially an arithmetic
operation that compares version numbers, which is a much
lighter operation compared to locking and other traditional
consistency schemes.

We present background about the problem, the system and
transactional machine learning model in Section 2. Then, we
propose COP in Section 3 followed by correctness proofs in
Section 4. We present our evaluation in Section 5. The paper
concludes with a discussion of related work and a conclusion
in Sections 6 and 7.

2. BACKGROUND
In this section, we provide the necessary background for

the rest of this paper. We introduce use cases of planning
within machine learning systems in Section 2.1. Section 2.2
presents the transactional model we will use for machine
learning algorithms.

2.1 Use Cases
We now demonstrate the opportunity and rewards of plan-

ning machine learning execution in three common models of
machine learning systems. We revisit these use cases in the
paper when appropriate to show how COP planning applies
to them.

2.1.1 Machine Learning Framework
Machine learning and data scientists do not process a

dataset only once in their process of analyzing it. Rather,
the scientist works on a dataset continuously, experimenting

Figure 1: A ow diagram of a typical machine learning frame-
work that employs a number of machine learning algorithms
to learn models from a dataset
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Figure 2: The current practice of machine learning of data
collected across the world is to batch data at geo-distributed
datacenters and send batches to a centralized location that
performs the machine learning algorithm

with di�erent methods and machine learning algorithms to
discover what method works best with a dataset. Thus, the
same dataset is being processed by many machine learning al-
gorithms repeatedly. Figure 1 shows a typical ow diagram of
a machine learning framework [12, 14, 27]. Multiple machine
learning algorithms are applied to an input dataset to pro-
duce models of the dataset. Each machine learning algorithm
may be applied multiple times with di�erent con�guration
and parameters, such as the learning rate.

In this model of a machine learning framework, the dataset
is being processed many times, once for each generated model.
This is an opportunity for COP to perform a planning stage
that is then applied to all runs.

2.1.2 Global-Scale Machine Learning
Online machine learning is the practice of learning from

data or events in real time. An example is a web application
that collects user interactions with the website and gener-
ates a user behavior model using machine learning. Another
example is applying machine learning to data collected by
Internet of Things (IoT) and mobility devices. Typically,
data is born around the world, collected at di�erent data-
centers, and then sent to a single datacenter that contains
a centralized machine learning system. This case is shown
in Figure 2 where there is a central datacenter for machine
learning in North America and four other collection data-
centers that collect and send data. This model has been
reported to be the current standard practice of global-scale
machine learning [4].

As data is being collected and batched at collection dat-
acenters, there is an opportunity to generate a COP plan.
This plan is then applied at the central datacenter for faster
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Figure 3: Execution of a machine learning algorithm by three workers with different consistency schemes. Each worker processes
an iteration of the machine learning algorithm, where the first and third iterations read and update the same model parameter.

execution. A challenge in this model is that data is generated
at different locations simultaneously and continuously. In
such cases, COP plans for each batch individually at col-
lection datacenters, and then batches are processed at the
centralized datacenter in tandem.

2.1.3 Dataset Loading, Preprocessing and Execution
In addition to the opportunities for planning shown in use

cases of machine learning systems, there is an opportunity
for planning even in a single execution of a machine learning
algorithm on a single dataset. This is because, typically, two
tasks are performed prior to a machine learning algorithm
execution: (1) Loading the dataset to main memory. Before
execution, the dataset is stored in persistent storage, such
as a disk. While loading the dataset from persistent storage,
there is an opportunity to perform additional work to plan the
execution. Our experiments demonstrate that planning while
loading the dataset introduces a small overhead between 3%
and 5% (Section 5.3).

Datasets are also typically preprocessed for various pur-
poses such as formatting, data cleaning, and normaliza-
tion [12]. Preprocessing is normally performed on the whole
dataset, thus introducing an opportunity to plan execution
while preprocessing is performed.

Even in the case of a dataset that is already preprocessed,
loaded and ready to be learned, there is another opportunity
to plan execution. A machine learning algorithm processes a
dataset in multiple rounds on the dataset that we call epochs.
Thus, planning during the first epoch will be rewarding for
the execution of the remaining epochs.

In Section 3 we introduce COP planning algorithms and
discuss their application to the various use cases we have
presented.

2.2 Transactional Model of Machine Learn-
ing

A machine learning algorithm creates a mathematical
model of a problem by iteratively learning from a dataset.
The mathematical model of a machine learning algorithm is
represented by model parameters, P , or parameters for short.
For example, the mathematical model of linear regression
takes the form y =

Pn
i=1 βixi + ε. The model parameters

consist of the variables of the model, namely the vector of

coefficients, β, and ε. The machine learning algorithm uses
the dataset to estimate the parameter values that will result
in the best fit to predict the dependent variable, y.

A dataset, D, contains a number of samples, where the
ith sample is denoted Di. Each sample contains information
about a subset of the parameters and the dependent variable
corresponding to them. To distinguish between model param-
eters and parameter values in samples, we call the parameter
values in samples features. For example, a dataset may con-
tain information about movies. Each sample contains a list
of the actors in a movie and whether the movie has a high
rating. A mathematical model can be constructed to predict
whether a movie has a high rating given the list of actors in
it. Each parameter in the model corresponds to an actor. A
sample contains a vector of feature values, where a feature
has a value of 1 if the actor corresponding to it is part of the
movie and 0 otherwise. A sample in the dataset also contains
whether the movie has a high rating. Using the dataset, the
mathematical model is constructed by estimating parameter
values. These parameter values can then be utilized in the
mathematical model to predict whether a new movie will
have a high rating based on the actors in it.

Estimating model parameters is performed by iteratively
learning from the dataset. Each iteration processes a single
sample or a group of samples to have a better estimate of
model parameters. An epoch is a collection of iterations
that collectively process the whole dataset once. Machine
learning algorithms run for many epochs until convergence.
For example, Stochastic Gradient Descent (SGD) processes
a single sample in each iteration. In an iteration, gradients
are computed using a cost function to minimize the error
in estimation. The gradients are then used to update the
model parameters.

Machine learning algorithms are typically studied and de-
signed for a serial execution where iterations are processed
one iteration at a time. A straightforward approach to paral-
lelizing a machine learning computation is to make workers
process iterations concurrently, where each worker is respon-
sible for the execution of a different iteration. Executing
iterations concurrently may lead to conflicts among some of
the updates from different workers, e.g., updates from dif-
ferent workers to the same model parameters may overwrite
each other. This means that the behavior of the algorithm no
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Algorithm 3 The COP partial order planning algorithm
that is performed prior to the experiment.

1: Planned version list := A list to assign read and write
versions initially all zeros

2: version readers := A list to count the number of trans-
actions that read a version

3: for Ti ∈ Dataset transactions do
4: for r ∈ Ti.read-set do
5: r.planned version =
Planned version list[r.param]

6: version readers[r.param]++

7: for w ∈ Ti.write-set do
8: w.p writer = Planned version list[w.param]
9: Planned version list[w.param] = i

10: w.p readers = version readers[w.param]
11: version readers[w.param] = 0

12: Delete Planned version list and version readers

COP enforces dependencies by versioning model param-
eters with the ids of the transactions that wrote them. A
transaction only starts execution if the versions it depends on
has been written. Consider applying COP to the scenario in
Figure 3(a). The resulting execution is shown in Figure 3(c).
Assume that the planned order is to execute samples 1, 2,
and 3, in this order. The partial order consists of a single
dependency from iteration 1 to iteration 3, because they
both read and write p. Iterations use a special read opera-
tion called ReadWait that waits until the version it reads is
written by the transaction that it depends on. Iteration 1 is
planned to read the initial version of p, denoted p0, because
it is the first ordered iteration to read p. Likewise, iteration 2
is planned to read the initial version of q. Iteration 3 depends
on Iteration 1, because they both read and write p. Thus,
iteration 3 is planned to read the version of p that is written
by iteration 1, denoted p1. With this plan, workers 1 and 2
process iterations 1 and 2 concurrently after verifying that
they have read their planned versions. Worker 3, however,
waits until the version p1 is written by worker 1 and then pro-
ceeds to process iteration 3. With COP, workers coordinate
without the need of expensive locking primitives. Rather,
workers only utilize simple arithmetic operations on the read
or written parameter’s version number to enforce the plan.

In the remainder of this section, we propose the COP
planning algorithm that is used to find and annotate depen-
dency relations between transactions (Section 3.2). Then
we propose the COP transaction execution algorithm that
enforces dependency relations (Section 3.3). We discuss the
performance benefits of COP in Section 3.4.

3.2 COP Planning Algorithm
In this section, we present the COP planning algorithm

in its basic form—planning prior to execution. Then, we
discuss how it can be used to plan in conjunction with the
first epoch and how it can be used in cases where there are
multiple sources of data.

3.2.1 Basic COP Planning
We begin by presenting the basic COP planning strategy.

Here, we assume that planning is performed before execution,
either in offline settings or while loading the dataset. The
objective of the planning algorithm is to annotate the dataset

with the planned partial order information. This annotation
includes the following:

Definition 2. (COP planning and annotation)
COP planning performs the following two annota-
tions: (1) Read annotation: each read operation is annotated
with the version number it should read, and (2) Write an-
notation: each write operation, w, is annotated with the id
of the version it should overwrites, w’, and the number of
transactions that are planned to read the version w’.

The read annotation’s goal is to enforce the order during
execution. The write annotation’s goal is to ensure that
a version is not overwritten until it is read from all the
transactions that are planned to read it.

Algorithm 3 shows the steps to annotate transactions with
the partial order information. The algorithm processes trans-
actions one transaction at a time ordered by some arbitrary
order—beginning with T1 and ending with Tn.

In COP, each read operation in the read-set, r, contains
both the read parameter to be read (r.param), and the
planned read version number (r.planned version), i.e., the
read annotation. A planned version number k means that the
transaction must read the value written by transaction Tk.
Also, each write in the write-set, w, contains the parameter
to be written (w.param), the number of transactions that
read the previous version (w.p readers), and the transaction
id of the transaction that it is overwriting (w.p writer), i.e.,
the write annotation.

The planning algorithm tracks the planned version num-
bers in a list named Planned version list as dependencies
are being processed. Planned version list[x] contains the
unique transaction id of the most recently planned transac-
tion that writes x. All entries in the list are initialized to
0. Also, the number of version readers are maintained in a
list named version readers. At any point in the planning
process, version readers[x] contains the number of planned
transactions that read the most recently planned written
version of x. Both lists are only used within the planning
algorithm and are deleted before the execution phase.

The planning of a transaction Ti proceeds by processing
the read-set and then the write-set. Each read operation r
in the read-set is annotated with a planned version from the
Planned version list (lines 4-5). For example, consider the
case where Ti reads model parameter x. Then, there is a read,
r, with r.param equals to x. At the time r is being planned,
the corresponding value in the list, Planned version list[x]
contains the unique transaction id, k, of the last transaction,
Tk, that wrote x. Thus, assigning the planned version of r to
k is a way of encoding that the plan is for Ti to read the value
of x that was written by Tk. Then, the corresponding number
of version readers is incremented (line 6). After processing
the read-set, the planning algorithm processes each write w
in the write-set (lines 7-11). Each write is annotated with
the previous writer’s version number (line 8). Then, the
corresponding entry in P lanned version list is updated with
the transaction id value i (line 9). Thus, reads of transactions
ordered after Ti can observe that they are planned to read
Ti’s writes. Then, the write is annotated with the number
of readers of the previous version (line 10). Finally, the
corresponding entry in version readers is reset. After all
the operations are processed, the lists Planned version list
and version readers are deleted.

The outcome of the algorithm is read and write annotations
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Algorithm 4 Parallel execution with COP

1: Global num reads := initially all zeros
2: procedure Process transaction Ti

3: for r ∈ Ti:read-set do
4: �← P:ReadWait(r)
5: num reads[r:param]++

6: � ← ML computation (�, Ti:sample; Ti:write-set)
7: for w ∈ � do
8: w:version = i
9: while w:p readers 6= num reads[w:param] OR
w:p writer 6= P [w:param]:version do

10: Wait
11: num reads[w:param] = 0

12: P ← �

of the whole dataset. The algorithm only requires a single
pass on the dataset. In the evaluation section, we perform
experiments to quantify the overhead of planning.

3.2.2 Alternative Planning Strategies
The basic COP planning algorithm, presented in the pre-

vious section, assumes that planning is performed prior to
execution in offline settings or during dataset loading. We
now show how to adapt the algorithm to plan in alternative
planning scenarios. The first alternative is to plan during
the first epoch of the machine learning algorithm’s execution.
The plan’s objective is to annotate transactions with a partial
order of a serializable execution. It is possible to execute the
first epoch of the machine learning algorithm via a traditional
consistency scheme (e.g., Locking) and then annotate the
dataset with the partial order of that epoch. Specifically, dur-
ing the first epoch using Locking, the planning Algorithm 3
is performed for each transaction while all the locks of that
transaction are held. Thus, each read is annotated with the
read version and each write is annotated with the version it
overwrites and the number of readers. After the first epoch,
that has passed through the whole dataset, the remaining
epochs are processed using COP with the annotated plan.
The planning only adds a small overhead to the first epoch,
as we discuss in the evaluation section.

Another alternative is to plan when the dataset is being
generated online from multiple sources, in cases such as
the global analytics scenario in Section 2.1.2. In such a
scenario, planning can be done at each source for batches
of samples using Algorithm 3. Then, at the centralized
location, the machines learning algorithms process batches
in tandem. The dependencies of a batch are transposed to
previous batches. For example, consider two batches b1 and
b2, where b1 is processed in the centralized location prior to
b2. The transactions in b2 that have dependencies on the
initial version, according to Algorithm 3, are transposed to
the most recent version written by b1. For example, the
first transaction that accesses x in b2 will be annotated as
reading the version 0. However, the centralized location will
translate this as an annotation to wait for the last version
written by b1.

3.3 Planned Execution Algorithm
We present the COP execution algorithm (shown in Algo-

rithm 4) that processes transactions in parallel according to
a planned partial order. We associate each model parameter

with a version number that corresponds to the transaction
that wrote it, e.g., P [x]:version is the current version number
of model parameter x. A list of the number of version readers
for model parameters, num reads, is maintained and acces-
sible by all workers. For example, a value for num reads[x]
of 3 means that so far, three transactions read the current
version of x.

Dependencies between transactions are enforced by ensur-
ing that read operations read the planned versions. Ti’s read-
set is read from the shared model parameters, P (lines 3-5).
The ReadWait operation blocks until the annotated planned
version is available. The implementation of ReadWait simply
reads both the data object and its version number. Then, it
compares the version number to the annotated read version
number. If they match, the read data object is returned;
otherwise, the read is retried until the planned version is
read.

After reading the planned version, the number of version
readers is incremented (line 5). Then, the transaction execu-
tion proceeds by performing the machine learning computa-
tion using the read model parameters and the data sample’s
information (line 6). Writes to the model parameters com-
puted by the machine learning computation, �, are buffered
before they are applied to the model parameters (lines 7-11).
First, each write, w, is tagged with a version number equal to
the transaction’s id (line 8). Thus, future transactions that
read the state can infer that Ti is the transaction that wrote
these updates. Then, the algorithm waits until the previous
version has been read by all planned readers by making sure
that the number of version readers is equal to the planned
number of readers of that version and by making sure that
the current version is identical to w:p writer (lines 9-10).
Since we are writing a new version, the corresponding entry
in num reads is reset to 0. The writes are then incorporated
in the shared state (line 12).

3.4 Performance and Overheads
In Section 2.3 we discussed two overheads of consistency

schemes: conflict detection overhead and backoff overhead.
The backoff overhead incurred in COP is similar to Locking
and OCC, i.e., transactions wait until conflicting transac-
tions complete. COP’s goal is to minimize the other source
of overhead: conflict detection overhead that is incurred
whether a conflict is detected or not. In COP, the conflict
detection overhead is due to: (1) The validation using the
ReadWait operation, and (2) Validation that each write opera-
tion’s previous readers have already read the previous version.
These two tasks are performed via arithmetic operations and
comparisons only, without the need for expensive synchro-
nization operations like acquiring and releasing locks. This
is the main contributor to COP’s performance advantage.

4. CORRECTNESS PROOFS
In this section, we present two proofs. The first proves that

COP is serializable and the second proves that deadlocks do
not occur in COP.

4.1 COP Serializability
We prove the correctness of COP and that it ensures a

serializable execution that is equivalent to a serial execu-
tion. We use a serializability graph (SG) to prove COP’s
serializability [3]. A protocol is proven serializable if the
SGs that represent its possible executions do not have cycles.
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(i.e., transactions) per second. Table 1 shows a summary of
throughput numbers for the different evaluated methods on
the three datasets. COP outperforms Locking and OCC by
a factor of 5-6x for KDDA and KDDB. For IMDB, COP’s
throughput is 64% higher than Locking and 124% higher
than OCC. The magnitude of performance improvement
of COP compared to Locking and OCC is influenced by
the level of contention in the dataset, i.e., the likelihood of
conflict between transactions. Our inspection of the datasets
revealed that there is more opportunity for conflict in the
KDDA and KDDB datasets than the IMDB dataset. We do
not present the statistical properties of the datasets to show
this due to the lack of space. However, we perform more
experiments in Section 5.2 to study the effect of contention on
performance. The comparison with Ideal shows that COP’s
throughput is 27-44% lower than Ideal. This percentage
represents COP’s overhead to preserve consistency. Although
conflicts are planned in COP, there is still an overhead for
conflict detection and backoff.

The throughputs of Locking and OCC are relatively close
to each other. For KDDA and KDDB, the throughputs
of Locking and OCC are within 10% of each other. For
IMDB, Locking outperforms OCC by 36.7%. In the case of
KDDA and KDDB, the locking contention for both Lock-
ing and OCC (to implement atomic validation) dominates
performance. In general, OCC benefits in cases where the
read-set is larger than the write-set. Because our machine
learning workload has a read and write-sets of equal sizes,
the advantage of OCC is not manifested (see Section 2.3).
In IMDB, which is the workload with less contention, Lock-
ing outperforms OCC. This is due to the additional work
needed to validate transactions by OCC. For the conflict
detection overhead, OCC experiences both the overheads of
locking and validation, while Locking only experiences the
overhead of locking. The overhead of validation is exposed
with workloads with less contention because in these cases,
locking contention does not dominate performance, i.e., in
the case of the KDDA and KDDB datasets, the overhead
due to locking contention dominates the validation overhead.
We revisit the effect of contention in Section 5.2.

In Figure 4, we show the performance of the different
schemes while varying the number of threads. Increasing the
number of threads increases contention. Also, using more
cores in the experiment exposes the effect of the underlying
cache and cache coherence on the performance of the different
schemes. Figure 4(a) shows the performance for the KDDA
dataset. Consider the throughput of all schemes with a
single worker thread. In this case, there is no conflict or
cache coherence overhead. What is observed is the conflict
detection overhead in isolation (Section 2.3). Ideal is only
21% higher than COP in the case of a single worker thread.
This shows that the overhead of conflict detection is small
compared to Locking and OCC; the throughput of Ideal is
163% higher than Locking and 186% higher than OCC.

For scenarios with more than one worker thread in Fig-
ure 4(a), the backoff and cache coherence overheads are
experienced in addition to the conflict detection overhead.
Ideal does not suffer from the backoff overhead because con-
flicts are not prevented. Also, Ideal has an advantage with
the cache coherence overhead compared to the consistent
schemes. Unlike COP, Locking, and OCC, Ideal does not
maintain additional locking or versioning data that may be
invalidated by cache coherence protocols. These factors cause
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Figure 5: Quantifying the effect of contention on performance
by experiments on synthetic datasets with varying contention
levels

the performance gap between Ideal and the other schemes to
grow as the number of threads is increased. COP’s through-
put, for example, is 17% lower than Ideal with one worker
thread, but it is lower by 43% in the case of 8 threads. The
contention between cores due to cache coherence limits scala-
bility. Ideal with 8 threads achieves 4 times the performance
of the case with a single thread—rather than 8 times the
performance in the case of linear scalability. COP with 8
threads achieves 3 times the performance of the case with
a single thread. For Locking and OCC, the contention is so
severe that performance slightly decreases beyond 4 threads.

We show the same set of experiments for KDDB and IMDB
in Figures 4(b) and 4(c). The experiments with the KDDB
dataset show similar behavior to the experiments with the
KDDA dataset. One difference is that COP scales better, as
the KDDB dataset is sparser than KDDA; for KDDB, COP’s
throughput with 8 threads is 4 times the throughput with a
single thread, rather than a 3x factor with the KDDA dataset.
For the IMDB dataset, there is less contention compared
to KDDA and KDDB. All schemes—including Locking and
OCC—scale with a factor around 4x when increasing the
number of threads from 1 to 8. Also, the smaller transaction
sizes with the IMDB dataset makes the absolute throughput
numbers higher than those with the KDDA and KDDB
datasets.

5.2 Contention Effect
Contention affects performance because it increases the

rate of conflict. A conflict between two transactions causes
at least one of them to either wait or restart, thus wasting
resources. Here, we quantify the effect of contention on
the performance of our consistency schemes. We generate
synthetic datasets to give us more flexibility in controlling
the contention. The synthetic datasets we generate contain
one million samples each. We fix the size of each sample
to 100 features, which means that each transaction contains
100 data objects in the read and write-sets. To control the
contention, we restrict transactions to a hot spot in the
parameter space. Each data object is sampled uniformly
from the hot spot. We control contention by varying the size
of the hot spot.

Figure 5 shows the performance with hot spot sizes of 1K,
10K, and 100K features. Contention leads to a higher conflict
overhead and lower performance. This is why consistency
schemes perform lower in the highest contention case (1K
features) when compared to cases with less contention. The
performance improvement factor of the case with 100K fea-
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