
Zero-Overhead NVM Crash Resilience

Faisal Nawab∗,†, Dhruva Chakrabarti†, Terence Kelly†, Charles B. Morrey III†

∗CS Dept., UC Santa Barbara, †HP Labs, Palo Alto, CA

Introduction

Byte-addressable non-volatile memory (NVM) allows
fine-grained in-place update of durable data. Failures
can corrupt application data. Realizing the full value of
NVM requires mechanisms to preserve application data
integrity in the presence of failures.

NVM transaction mechanisms [1, 2, 7] prevent fail-
ures during updates from corrupting data, but such mech-
anisms carry substantial performance overheads. Our
new alternative guarantees consistent recovery of appli-
cation data following failure and has zero overhead dur-
ing failure-free operation. Below we outline our new ap-
proach, and evaluate its effectiveness. Our tech report
provides more detail [5].

NVM Transaction Overheads

NVM transaction overhead largely stems from forcing
data from volatile CPU caches to NVM (e.g., via cache
line flushes). We can eliminate the need to force data
into NVM by borrowing an insight from whole-system
persistence: flush-on-failure can replace flush-as-you-go.
We need not insist that data has reached NVM during
failure-free operation if instead we are assured that the
data will reach NVM in the event of failure [5].

Tolerating power outages requires sufficient standby
power for orderly system shutdown. Fortunately, The
time and energy required to flush CPU caches to NVM
is orders of magnitude smaller than would be required
to dump volatile DRAM to block storage. Narayanan
& Hodson report that a typical computer’s power supply
contains sufficient residual energy for this task [4]. Tol-
erating OS kernel panics requires the kernel panic han-
dler to flush all CPU caches to NVM before halting the
system. Tolerating process crashes can be done by file-
backed memory mappings. Cached modifications will
eventually find their way down through the CPU cache
and page cache to the backing file

Zero-Overhead Atomic Updates

Our main contribution is a crash resilience technique that
avoids all of the performance overheads of existing NVM
transaction mechanisms because it performs no logging.
Our technique combines flush-on-failure with a class of
multi-threaded isolation mechanisms into a consistent
recovery mechanism.

Our technique is to combine flush-on-failure with non-
blocking algorithms: Consistent data recovery will al-
ways succeed following the abrupt termination of a pro-
gram that manipulates NVM via non-blocking algo-
rithms on a system with flush-on-failure support. A non-
blocking algorithm ensures that an observer will see a
“sane” state of memory and can make useful progress.
Thus, recovery code has a consistent view of application
data and can resume correct execution.

References

[1] D. Chakrabarti et al. Atlas: Leveraging Locks for
NVM consistency. In OOPSLA, 2014.

[2] J. Coburn et al. NV-Heaps: Making persistent ob-
jects fast & safe with NVM. In ASPLOS, 2011.

[3] K. Fraser and T. Harris. Concurrent Programming
without locks. ACM TOCS, 25(2), May 2007.

[4] D. Narayanan and O. Hodson. Whole-System per-
sistence. In ASPLOS, 2012.

[5] F. Nawab et al. Procrastination Beats Prevention.
Technical Report HPL-2014-70, HP Labs, 2014.
Submitted to EDBT.

[6] S. Pelley et al. Memory Persistency. In ISCA, 2014.

[7] H. Volos et al. Mnemosyne: Lightweight persistent
memory. In ASPLOS, 2011.

1

http://dl.acm.org/citation.cfm?doid=2660193.2660224
http://doi.acm.org/10.1145/1950365.1950380
http://doi.acm.org/10.1145/1233307.1233309
http://doi.acm.org/10.1145/2150976.2151018
http://www.hpl.hp.com/techreports/2014/HPL-2014-70.pdf
http://edbticdt2015.be/
http://dl.acm.org/citation.cfm?id=2665671.2665712
http://doi.acm.org/10.1145/1950365.1950379



