
High Performance Temporal Indexing on Modern
Hardware

David B. Lomet 1, Faisal Nawab 2

1 Microsoft Research, Redmond, WA 98052 USA
lomet@microsoft.com

2 Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA 93106 USA
nawab@cs.ucsb.edu

Abstract—Transaction time databases can be put to a num-
ber of valuable uses, auditing, regulatory compliance, readable
backups, and enabling multi-version concurrency control. While
additional storage for retaining multiple versions is unavoidable,
compression and the declining cost of disk storage largely removes
that impediment to supporting multi-version data. Not clear
has been whether effective indexing of historical versions, can
be achieved at high performance. The current paper shows
how temporal indexing can exploit the latch-free infrastructure
provided for the Bw-tree by the LLAMA cache/storage subsystem
to support high performance. Further, it demonstrates how
the LLAMA mapping table can be exploited to simultaneously
enable migration of historical data, e.g. to cloud storage, while
overcoming the index node time splitting difficulty that has arisen
in the past when historical nodes are migrated.

Keywords—Modern hardware, latch-free, log structured, tem-
poral database, multi-version indexing

I. INTRODUCTION

A. Temporal Data

Temporal functionality has been discussed within the
database community for many years. This functionality in-
cludes both transaction time [28], [29] and valid time variants,
and bi-temporal that includes both variants.

1) Transaction Time Support: Our emphasis here is on
transaction time functionality. Longer term storage of versions
enables both (1) time travel that explores how a data item has
changed over time and (2) as of queries which provide access
to the state of the database some time in the past. Transaction
time databases (TTDBs) provide access to both current and
previous database states by creating new versions of data for
every transactional update, as opposed to doing update in
place. TTDB’s have a “long history” in the database research
community [10], [29]. In addition, the SQL standard specifies
temporal functionality and this is supported commercially by
Oracle [1], [2] and IBM.

In this paper we show how transaction time indexing can be
provided with very high performance. We do this by exploiting
many of the same techniques pioneered in the Bw-tree, a non-
temporal B-tree index [18]. In particular, we make use of an
augmented form of the LLAMA [16] cache/storage subsystem.

2) Uses for Transaction Time Data: TTDB’s have been
used for auditing, legal compliance, trend analysis, etc. [3],
[23]. Such uses derive from their ability to execute queries as

of a past time and to trace data items forward and backward
in time, called time travel.

In addition to external user functionality, TTDB’s serve
useful systems purposes such as backup and restore. The
historical data can serve as a query-able online backup that
can be used for media recovery and point-in-time recovery.
Transaction time versions have been exploited commercially in
a number of these system aspects. For example, Rdb [9] uses
these versions for a transaction consistent checkpoint. Oracle
uses its Flashback versions for point-in-time recovery [1] to
remove erroneous user transactions. The Immortal DB research
prototype [20] used versions in a similar but more precise
way, by being able to automatically remove only versions that
depended upon the erroneous data.

B. Temporal Indexing

Temporal data is two dimensional (2D). A key or record id
uniquely identifies a point in key space. In the time dimension,
versions have lifetimes, naturally represented as a line segment.
This characteristic of the time dimension led several temporal
indexes to exploit the notion of a time split, introduced in the
Write-Once B-tree (WOB-tree) [6].

A time split separates versions of a page by time into two
pages. Versions only in the time region corresponding to one
page only reside in that page. But any version that crosses
the time boundary between the pages appears in both pages.
This permits a search that will always find a given version of
a record within key and time boundaries of a single leaf page
responsible for a disjoint part of the search space.

Splits only occur on pages containing current data. Pages
with only historical data are not updated and there is no need to
partition them further. How one handles historical and current
pages that result from a time split varies among the temporal
methods. The WOB-tree moved the current data to a new page
since it was using a write-once medium that prevented it from
updating the existing page, which was hence assigned to the
purely historical data.

The time-split B-tree (TSB-tree) [22] moved historical data
nodes elsewhere, e.g. to perhaps less expensive media, so as
to keep the current data as highly accessible as possible. But
this limited index node time splitting, even perhaps leading to
the need to time split lower level nodes so that an index node
could be time split effectively (see section IV).

Fig. 1: Deuteronomy transactional key value store architecture.
Note that the intent of the architecture is to permit multiple
access methods to be “slipped into” the system.

1) Modern Hardware: The promise of temporal function-
ality has always been weighed against the cost of providing
it. Much of the focus of the Immortal DB project [21] was on
showing that the performance for the current data would not
be adversely impacted by the costs of storing and managing
historical versions.

The context for temporal functionality has now changed
from prior efforts. Improved exploitation of modern hardware
has produced dramatically higher performance for current time
database systems [5], [7], [12], [16]. The question is whether
these performance techniques can be applied to multi-version
data, with comparable positive performance impact.

2) “Modern” Temporal Indexing: This paper introduces
the TSBw-tree, a temporal access method that performs time
splitting and, like the TSB-tree, migrates historical data. The
TSBw-tree exploits the LLAMA cache/storage manager used
by the Bw-tree as its latch-free, log structured infrastructure.
The architecture of this system [17] is shown in Figure 1.

There are subtleties in the TSBw-tree, both in its time
splitting and in the migration of historical pages to a different
location. This paper describes the nature of the problems
encountered and how the TSBw-tree solves them using a
modified LLAMA subsystem.

C. Contributions

The TSBw-tree is a new temporal indexing method like the
TSB-tree that layers on LLAMA, with its latch-free and log
structured implementation that so effectively exploits modern
hardware. There are three major contributions in doing this.

1) High Performance: LLAMA latch freedom means that
readers never collide with writers and that threads are never
blocked or forced to do a context switch. This is a key part of
the LLAMA “secret sauce”, and accounts for the unparalleled
high Bw-tree main memory performance. The log structuring
means that the number of writes needed to make multi-
versioned data stable is greatly reduced. This combination of
thread and I/O efficiency carries over from the Bw-tree [18]
to the TSBw-tree setting, resulting in the highest performing

temporal access method yet reported. This also illustrates
LLAMA generality in supporting multiple access methods.

2) Index Node Splitting: The TSB-tree, during a time split,
moves the historical page produced by the split to a new
location. Unfortunately, moving historical nodes introduces
a serious complication to the splitting of index nodes. In
particular, the TSB-tree had trouble splitting index pages
exactly because a historical page can move and require the
updating of its index term. And this index term might be on
a historical index page, or might even be on both current and
historical pages. The TSBw-tree avoids this problem, despite
the migration of historical pages. This is a feature of our
mapping table architecture and is described more fully in
Section IV.

3) History Migration: We extend LLAMA to support
migration functionality. This enables crash recovery for the
log structured store without the need to scan historical data.
Migration of historical data solves a LLAMA difficulty. Log
structured file system (LFS) cleaning (garbage collection)
moves unchanged data from the early part of the log to
the end of the log to make contiguous space available for
reuse. Historical data is never changed but can persist for
an extended period. Without migration, a historical page is
rewritten whenever cleaning encounters it. Migration moves
this historical page to a different location where it avoids
further cleaning induced moves. The migration protocol is
described in Section V.

D. Outline

The paper is organized as follows. We give background
on LLAMA in Section II and describe our high performance
temporal indexing in Section III. The major technical innova-
tions are described in detail in Sections IV(node time split-
ting) and V (migration). Section VI presents our performance
results, while Section VII discusses related work. We present
some conclusions in Section VIII.

II. LATCH-FREE, LOG STRUCTURED

As with the Bw-tree, we exploit LLAMA to produce a
high performance index, now for temporal data. Exploiting
the LLAMA mapping table avoids the index maintenance
difficulties experienced by earlier temporal indexing methods
that relocated historical data. The mapping table also facilitates
migration of historical data to a less expensive storage medium
where we can minimize its impact on current time database
performance. Migration also reduces the write amplification
that is a characteristic of log structured approaches.

A. Latch-free Updating

The Bw-tree [18] demonstrated that eliminating latches and
reducing update-in-place produces high performance for a B-
tree style index. All Bw-tree updates are installed using a
compare and swap (CAS) instruction. The effect is that readers
never wait for writers, or the reverse. Writers sometimes run
into each other (low probability), producing an update CAS
failure that requires repeating the update.

In addition to being latch-free, many updates are delta
updates that avoid update-in-place. The deltas are accumulated

Fig. 2: The Mapping Table showing delta updating. The
mapping table isolates a page physical location from the logical
references to it. A logical reference may remain unchanged
while the physical location of the page changes.

into a batch that is eventually merged into a read-optimized
state. This has two benefits. (1) The number of state re-
organizations is reduced by the size of the batch, reducing the
instruction path per update. (2) While accumulating the batch
of deltas, the cached state of the page is preserved, greatly
improving the hit ratios of the processors caches.

LLAMA supports both latch-free state changes and delta
updating. It enables an access method to focus solely on the
indexing aspects of its task. For the Bw-tree, that was indexing
the current key identified data. Here, we use LLAMA for a
revised implementation of a time-split B-tree (TSB-tree) [22].

B. Mapping Table

The mapping table provides a central array with pointers
to each page, the pages identified by the array index used as
a logical page id (PID). All references to the page outside of
a page use the PID. Pointers acquired while an operation is
accessing the page are acquired via the mapping table trans-
lation of the PID. These pointers have a lifetime coincident
with operation execution. Between operations, some or all of
the pointers derived from the mapping table can change.

The level of indirection provided by the mapping table
permits us to use the mapping table PID entry for the page
to make atomic state changes to it. A state change can involve
more than simply data state change, as page flushing and page
structure modifications also change page state (see [18] and
section IV-A2 of this paper).

C. Operations on Pages

LLAMA is latch-free and supports the following user
operations to read and write pages of data:

• Delta Update (D-Update): The D-update starts by
observing the current state of the page. The current
state is represented by the current address associated
with the PID in the mapping table. Then, a delta record
that describes the necessary changes is created. This
record has a pointer to the current state (address) of
the page. A CAS on the current state as represented in
the mapping table entry is then executed. If successful,
the D-update is installed and the changes are observed.
Figure 2 illustrates this. A D-Update is invoked as
Update-D(PID, in-ptr, out-ptr, data). PID is the page
id. The in-ptr is a pointer to the prior state of the page
and out-ptr points to the new state of the page. The
data parameter can take different forms depending on

the delta type. For example, a delta to update a record
consists of a key and a value.

• Replacement Update (R-Update): An R-Update in-
stalls its state in a similar fashion. In this case however,
a totally new state is constructed and a pointer to the
new state is installed using a CAS. The storage for
the old state becomes garbage at this point. However,
because other threads may still be accessing it, an
epoch mechanism is used to protect the storage for the
old state until no thread can have seen it and hence
still depend on it. An R-Update is invoked as Update-
R(PID, in-ptr, out-ptr, data). The parameters have the
same function as the ones for the D-Update. However,
in a R-Update the data parameter describes the entire
state of the new page, not the changes to the old state.

• Read: A page read returns the page’s address in main
memory. If it is only on secondary storage, the read
first fetches the page to main memory and then returns
the address. The interface for reads is Read(PID, out-
ptr), which reads a page with id PID and returns a
pointer to the page in main memory via out-ptr.

Cache management produces state changes to pages of
the cache in the same way that data operations produce state
changes. For example, when a page is flushed, the flush is
indicated by prepending a flush delta to the prior state of
the page and installing it with a CAS on the mapping table
entry. There is the added requirement to coordinate this with
the posting of the page contents to the log structured storage
(LSS) log buffer. This coordination is quite subtle and is
explained fully in [16]. Our temporal index will exploit the
same operational paradigm, as described in Section V.

D. Log Structured Storage

LLAMA stores its data on secondary storage in a log-
structured manner [16]. As implemented previously, it man-
aged its data as a single circular buffer, cleaning (garbage
collecting) at the logical buffer start, while posting data to
the logical buffer end. The cleaned storage at buffer start is
recycled to become the free storage at the logical buffer end
where newly updated pages are written. As we discuss below,
this storage management strategy is not very effective when
historical data is mixed with current updatable data.

Managing the persistence of data is provided by the fol-
lowing operations:

• Flush: Flush copies page state from cache to LSS
buffer. Flush uses a latch-free approach that never
blocks. Flush is invoked via Flush(PID, in-ptr, out-
ptr, annotation). The in-ptr is the old state of the page
and out-ptr is the new (flushed) state of the page. Each
flush has an annotation that is set by the caller and is
opaque to LLAMA. It can be used for a multitude of
purposes as shown later. LLAMA returns the memory
address of a “flush delta” that includes the location
of the page in the log structured store (LSS) and the
annotation. This flush delta is part of the page state
copied to the LSS buffer.

• Mk-Stable: A Mk-Stable ensures that flushed pages
are made stable. The interface is Mk-Stable(LSS

address). The LSS address is an address in the LSS.
The interface returns only after all data up to the
provided LSS address is stable in secondary storage.

• Hi-Stable: Hi-Stable returns the highest LSS off-
set of persistent LLAMA data. The interface is Hi-
Stable(out-LSS address).

• Allocate: An allocate creates a new page with a unique
Page ID (PID) using the interface Allocate(out-PID).

• Free: A free deallocates a page and make the PID
available for reuse using the interface Free(PID).

E. System Transactions

LLAMA supports a limited transaction facility called a
system transaction. System transactions are used for structure
modifications needed by an access method, e.g. node splits. In-
side a transaction, only the following operations are permitted:
(1) Allocate, (2) Free, and (3) Update-D. Also, Allocate and
Free must be called inside a transaction since the allocation
state of a page needs to be persistent. A transaction works by
reserving space in the LSS buffer for the operations that are
inside the transaction and treating them as a single unit. This
enables the stability of operations within a system transaction
to be all or nothing, thus avoiding the need for system
transaction undo to cope with partially executed transactions.

Durability and atomicity are provided via system transac-
tion operations:

• TBegin(out-T ID): begin a transaction and return a
transaction ID (T ID).

• TCommit(T ID): commit a transaction identified by
T ID.

• TAbort(T ID): abort transaction T ID.

Operations that use the result of a committed transaction
are guaranteed to come after the transaction’s commit in the
LSS. This enables the LSS to act as a durable recovery log.
The use of delta updates makes logging the state in the LSS
efficient compared to logging the state of the whole page.

The Bw-tree performs node splits in a latch-free man-
ner [18] using a system transaction. The split is triggered
when the page size exceeds a system threshold. A leaf page
maintains a side link to the most recent split page. The side
link provides a valid search path after installing the split page.
This allows separating the split into two atomic actions. The B-
link atomic split installation technique is employed to perform
the split [15] in two phases.

1) The split at the leaf level is done in a system
transaction that allocates a new page and installs a
split delta.

2) The parent node is then atomically updated to contain
the new index term pointing to the new page.

The process continues recursively up the tree if the size of the
parent node exceeds the threshold.

time

k
e
y
 s

p
a
c
e

k1

k2

k3

k4

t1 t2 t3T
Fig. 3: A key-time representation of a page. A solid line
represents the existence of the key at the corresponding time
and a circle denotes an update/insert of the key.

III. THE TSBW-TREE

The TSBw-tree leverages LLAMA’s latch-free and log-
structured infrastructure to provide temporal indexing support
similar to that provided by the TSB-tree, but exploiting modern
hardware in the way that was done by the Bw-tree. In this
section we begin by presenting the temporal indexing methods
of the TSB-tree. Then, we show how the TSB-tree is adapted
to LLAMA to form the TSBw-tree.

A. Time-Split B-tree

1) Indexing Versioned Data: Temporal data records contain
key, value, and version timestamp. Data records reside in
leaves of the TSB-tree. A leaf node can have many versions
of a record with the same key. A record update is treated as
an insertion of a new version. The TSB-tree indexes records
by both key and time. There are lower and upper bounds on
key values and timestamps in a leaf node. Figure 3 shows a
key-time diagram of a leaf node with four keys. Each record
is represented with a horizontal line. The beginning of the line
is when the first record with that key was inserted. A circle
denotes an update to the key. For example, key k1 was inserted
at time t1 and updated at t3. This node contains six records,
two of which are historical.

Index nodes contain entries pointing to leaf pages or
other lower level index nodes. An entry contains key, page
pointer, and timestamp. Multiple entries can have the same
key, at most one being current and the rest historical. The
timestamps of entries pointing to historical pages denote the
split times at which they were separated from more recent
versions. Historical nodes contain the values within the key and
timestamp ranges for the page. Once a time split is performed,
the historical page is never updated. Only current pages are
updated. The current page’s timestamp is a special “infinity”
time that is logically higher than all other timestamps.

To find a current record, search starts at the TSB-tree root.
At each level, search looks for entries with the largest key that
does not exceed the search key. Search then follows the entry
pointing to a current node. Repeat this process until search
arrives at a leaf node. All updating of the TSB-tree starts with
locating the leaf node with the current version of the record
with a given key. The new record version is added to that node.

2) Key Splitting: In many cases, it does not make sense
to split by time. When time split, a node that contains mostly

current records will result in two pages with a lot of redundant
records. In such cases a key split is favored with a split key
chosen to split the node. The index node pointing to the
original node is then updated to contain an entry pointing to
the new page with its new key range boundaries.

3) Time Splitting: With temporal data, an update is treated
as an insert with a higher timestamp. If updates continue
for records in a page, the page will eventually store mostly
historical records, diluting the density of current records in the
key range stored on each page. So several temporal indexes
separate historical versions from pages storing current versions
via a time split.

Temporal access methods, including the TSB-tree, can
exploit the fact that historical versions are not updated. Hence,
these methods can use “time splitting”, introduced in the
WOB-tree [6]. Unlike keys of current time databases, time
associated with a version is an interval. Splitting at a time then
requires duplicating versions whose validity interval crosses
the split time boundary, enabling a page to contain all versions
present in its time interval.

Consider the leaf node at Figure 3 for example. A record
is denoted by < key, timestamp >. If the node was split with
split time T it will result in a historical node with four records:
< k1, t1 >, < k2, t2 >, < k4, t1 >, and < k4, t2 >. The new
current node will contain the records: < k1, t1 >, < k1, t3 >,
< k2, t2 >, < k3, t3 >, and < k4, t2 >. The records < k1, t1 >,
< k2, t2 >, and < k4, t2 > exist in both pages because their
validity crosses the split time T . Duplication of data across a
time split consumes additional space, but need not introduce
extra version updating complexity as only the current version
can be updated. “Historical” versions are read-only. Indeed,
even current versions are read-only at times earlier than the
current time.

4) Indexing Historical Data: The TSB-tree, using time-
splits, indexes historical nodes as well as current nodes.
Finding any leaf node then involves using an index that is
larger than one accessing only current data. Thus, indexing
historical nodes increases the access time to reach current
nodes. However, TSB-tree access time to all data is logarithmic
in the size of both current and historical data. Hence the height
of the TSB-tree is rarely more than one level greater than the
height of a simple B-tree over current data.

B. Temporal Indexing With LLAMA

The TSBw-tree leverages LLAMA to efficiently provide
TSB-tree temporal indexing. Much of the TSB-tree function
is mapped to LLAMA’s interface in a way analogous to the
Bw-tree. Updates are done using D-Update and R-Update
operations, such that all versions are timestamped and no
versions are discarded.

Structure modification operations (SMOs) [24] require
multi-page changes. Splitting a node by key or time is divided
into two atomic actions, as done in the Bw-tree. Each atomic
action is a system transaction. The algorithm for node splits is
shown in Algorithm 1. A first transaction installs a split delta
at the full page that points to a new page and, if successful, a
second transaction installs an index update delta to the parent
index page.

Algorithm 1: Performing a key or time split with system
transactions

1: // begin the split transaction with (TIDsplit)
2: TIDsplit = TBegin ()
3: Read (Ppid , P) // read page P
4: Allocate(Qpid) // allocate a PID for a new page Q
5: KP := set of keys that will be in P after the split
6: KQ := set of keys that will be in Q after the split
7: prepare (Q, KQ) // populate a page Q and prepare it
8: Update-R (Qpid , Q) // install the new page Q
9: // install the split delta

10: Update-D (Ppid , split-delta (KP, KQ))
11: // if the split delta failed, abort
12: If f ail: Free(Qpid), TAbort(TIDsplit) and exit
13: TCommit (TIDsplit)
14: // begin the index delta system transaction with (TIDindex)
15: TIDindex = TBegin ()
16: // install the index delta
17: Update-D (Pparent−pid , Index-entry-delta (KP, KQ))
18: // if the index delta failed, abort
19: If f ail: TAbort(TIDindex) and exit
20: TCommit (TIDindex)

The first transaction with T IDsplit (line 2) is initiated. Then
page P, is read (line 3), and a new page Q is allocated as
the new right page of the split (line 4). For key splits, two
sets of keys are created: (1) KP: for keys that will be in P,
and (2) KQ: for keys that will be in Q (lines 5-6). Page Q is
prepared for installation (lines 7-8). It is first populated with
KQ then its annotation is set by the higher layers input (e.g.,
log position, timestamps,etc.). Also, a side link to what was P’s
right neighbor is set. The critical part is installing the split delta
on P (line 10). A split delta contains information about the key
sets to allow it to redirect operations to Q if the corresponding
key was moved there. When installment of the split delta fails,
Q is freed and the transaction is aborted (line 12). Otherwise,
the transaction commits (line 13).

The second system transaction installs a new index entry
(line 15) at the parent node. This uses a delta update to install
a new index term (line 17). If the delta update fails, the system
transaction is aborted (line 19) and is retried. If the index delta
is installed, the system transaction commits (line 20).

Although the logic is similar for both key and time splits,
time splits have challenges that have design implications for
splitting both data and index nodes. This is discussed in
Section IV.

IV. NODE TIME SPLITS

We want historical nodes to be read only to enable histori-
cal queries to execute without locking or latching. Thus, when
we do a time split, we want to ensure that no future updates
will be made to the historical node generated. This requires
that we take care in choosing a split time for both data and
index nodes.

A. Avoiding Updates to Historical Index Terms

1) Time Splitting Conundrum: Many temporal indexing
techniques derive from the write-once B-tree (WOB-tree) [6],
which was designed to provide B-tree style indexing for write-
once disk storage. To cope with write-once storage, nothing
was updated in place. Rather, new versions of data were added,

which, in a transactional setting can support transaction time
functionality. This “no update in place” was a requirement
of the media, and meant that once a page was written, further
updating required that a new page be the home for the updates.
This was accomplished by a “time split”.

Since each record version has a duration at which it
represents the state of the record, and because record updating
is normally not coordinated, a split time will usually intersect
the record version lifetimes of most records. With the WOB-
tree, this led to time splits as of the current time, copying the
current versions to a new current node. A further result was
that historical nodes were never updated, including historical
index nodes, when split in the same way.

The TSB-tree [22] moved the historical node when a
current node was time split. The intent was to keep the
current data more accessible on, perhaps, a higher performance
medium, while storing historical data on a lower cost medium.
However, when historical nodes move, ensuring that only the
current parent of the node is updated constrains the time at
which we can split the parent to times earlier than the begin
time of its oldest current child node. Otherwise, updating the
child’s new historical index term page pointer requires an
update to the historical index node. This is very restrictive with
respect to split times, and can result in the need for preemptive
time splitting of child nodes to enable their parent index node
to split at more convenient times.

2) LLAMA Mapping Table: Like the TSB-tree, and unlike
the WOB-tree, the TSBw-tree migrates historical data, while
leaving the current data on the same high performance medium
on which it started. But it does this in a new way. In earlier
indexing, the “node name” and its physical location were
the same. With the mapping table (see Figure 2), these are
separated, with the result that a historical node does not
change its logical PID address, while still being subject to
migration of its physical location. This permits the TSBw-
tree to avoid the index node splitting TSB-tree problem where
moving a historical node required updating the page pointer
of its (historical) index term in a historical index page.

B. Avoiding Insertion of Current Items to Historical Nodes

We need to ensure that split times are chosen such that a
current item (index term or record) never needs to be included
in a historical node. This requires care in choosing split times
for both data and index nodes. We discuss this below.

1) Data Nodes: LLAMA is designed to work in a con-
current environment where multiple threads, of unknown per-
formance, update pages. While threads usually have similar
execution rates, robust concurrent systems avoid assumptions
about execution rate. User updates, with associated times-
tamps, will be generated and submitted in approximate times-
tamp order. But the timestamp order of updates at a page may
not be monotonically increasing because of concurrent activity.
Hence, when splitting data nodes, we need to choose a split
time that guarantees there are no unapplied updates with earlier
times, which would require updating the historical page.

In the Deuteronomy architecture [17], a transactional com-
ponent (TC) sends an “end of stable log” (EOSL) control
operation to a Data Component (DC), that indicates a low

water mark LSN such that all updates with lower LSNs than
the EOSL LSN are guaranteed to be on the stable log, and more
importantly, that there are no outstanding updates with lower
log sequence numbers. We can augment EOSL information
to include a low water mark timestamp EOSL-TS such that
there are no updates with lower timestamps than EOSL-TS
that remain active and may need to update a data node. Hence,
we can use EOSL-TS as the time at which we time split data
nodes in the TSBw-tree and be sure that no earlier timestamped
updates will present themselves that would need to update a
historical node.

Although it is safe to choose any split time that is less
than EOSL-TS, it is preferred to make the split time equal to
EOSL-TS. Splitting with a time earlier than EOSL-TS will not
move out as many versions to the historical page. This leads
to having more records in the current page after a time split,
which speeds the process of filling the page and triggering
more splits. Choosing EOSL-TS as the split time will reduce
the number of data node splits compared to using an earlier
time.

2) Index Nodes: Like record updating, a data node split can
be concurrent with other data node splits and with parent index
node splits. Thus we cannot be sure that data node splitting,
and associated index term posting, complete in monotonically
ascending timestamp order. We need to ensure that an index
node split time is earlier than the timestamp of any subsequent
current index term posted as a result of a lower level time split.
This ensures that the index term is added to the current parent
index node, not to a historical node. For this we need a low
water mark timestamp at each index level L similar to EOSL-
TS that guarantees this. This will ensure that active time splits
at level L produce index terms that need only be posted to
their “current” parent at level L+1.

Thus, for each level L of the tree, we track the active time
splits. At each level L we maintain a split timestamp ordered
list of active time splits for L with list elements <next, key,
timestamp, PID>. The next attribute points to the earlier time
splits on the list. The remaining fields are the fields of the
index term that the time split will post. An index term must
be posted to this list prior to the beginning of its associated
time split. We maintain each list using latch-free techniques.
New entries, with later timestamps, are prepended to the start
of the list with a CAS. When a time split is completed at
level L, including the posting of its index term, we remove its
entry from the level L list. We do this by marking the entry
as deleted, and periodically “consolidate” the list to remove
marked elements. Should the list at level L become empty, we
remove all its elements but retain in the list header a lower
time bound for all subsequent time splits at level L of the tree.

When a time split begins at L+1, we choose its split time
to be earlier than the time of any active time splits at L. This
ensures that index terms for these active level L time splits
are all posted to current pages produced by time splits at level
L+ 1. Thus, when we time split at level L+ 1, we use, as
our split time, min{timestamp‖< key, timestamp,PID> in L}.
There can be no future index terms from level L that can have
earlier times than this, which is exactly what we need.

V. MANAGING HISTORICAL DATA

A. Why Archive Historical Data

A valuable feature of the TSBw-tree is its ability to isolate
historical records from current ones. Current records are the
ones undergoing more access and manipulation. It is possible
to exploit this isolation both to improve access to current data
and to reduce the cost of maintaining historical records.

The storage medium for current records might be capacity
limited flash storage. And even if it is disk storage, one might
want to isolate historical data from current data to reduce
access interference in order to improve access to current data.
Thus, there will frequently be a performance advantage to
using a separate medium for the storage of a growing historical
archive.

It is also more cost effective to leverage an alternative
storage medium for historical data, a medium that has a
larger capacity but possibly lower performance. Using flash
for current data and migrating historical data to disk or cloud
storage are examples of this paradigm. The choice of the
archival medium affects access to migrated historical data.

LLAMA currently manages its log structured store (LSS)
with a single multi-buffer circular queue. New writes for nodes
go to the “logically” ever increasing end of this queue. At the
head of the queue, underlying space is being reclaimed (LFS
cleaning) by a relocation-based garbage collector. Overwritten
nodes are the garbage that is being reclaimed. However, nodes
that are still active need to be relocated (re-written) to the end
of the queue.

This scheme, if unchanged (without migration) results
in historical nodes, which are accessible but never updated,
being continuously re-written, resulting in an unbounded write
amplification for historical data. Migration solves this problem
directly by moving historical data out of the LSS used for
the current data. Thus the TSBw-tree exploits a two level log
structured storage. The way that the TSBw-tree manages this
two level store results in confining all log structured recovery
from system crashes to the LSS containing the current data
(LSS-C). The LSS containing historical data (LSS-H) never
needs to be accessed during recovery. And LSS-H requires
garbage collection only if historical data is being dropped,
which might happen but on a very different time scale and
where a simpler and cheaper cleaning paradigm can be used
(see section V-C).

B. Moving History Nodes

1) Safety Problem: Adding archiving functionalities to
LLAMA results in two stores that need to be managed. Entries
in the mapping table point to pages both in the current storage
and historical archive. The content and stability of LSS-C and
LSS-H determine the state of the cache/storage subsystem.
LLAMA must guarantee that a failure at an inopportune time
does not cause a corrupt state after recovery. Migrating a page
to the archive will invalidate it in the current storage. Garbage
collection will reclaim these invalidated pages but will not
rewrite their contents in LSS-C. The problem that arises is
that an invalidated page might be garbage collected prior to
being stable in LSS-H. If that happens, a crash would lose the
page while in the middle of its migration.

Our modified LLAMA does not allow garbage collection
of a migrated page from the LSS-C unless it is stable in LSS-
H and visible stably from LSS-C. A system crash during the
midst of migration, and before the archived page is visible
stably will result in a state after recovery as if the page were
not migrated and is still part of LSS-C. This can lead to wasted
space in the archive. This is a cost incurred to ensure no
data loss caused by dangling pointers in the mapping table
for migrating pages. And the wasted space is minor as crashes
are rare.

2) Interfaces: A deployment of another storage medium to
preserve data requires changes to the cache/storage layers and
their interfaces. The main idea behind the following modifica-
tions is to add a migration component that will be responsible
for managing historical information. This migration component
is exposed in the cache layer interface and will act as a second
storage layer “adjacent” to the storage layer for current records.

Since LLAMA is not aware of the contents of pages, it
is not possible for LLAMA to be responsible for deciding
whether pages are to be migrated or not. The migration
component itself needs to provide a specific interface at the
cache layer to permit the access method to invoke migration as
it sees fit. This interface is in the form of Migrate(in-id). This
operation is similar to a flush operation that writes the page
to the LSS-C but performs the similar function of flushing the
page to LSS-H. The in-id identifies the page to be migrated.
Flushing a migrated page’s state to the LSS-C will store a
“flush delta” that indicates that the page has been migrated
and include its offset in the LSS-H.

In addition, the functionality of Read(id, out-ptr) needs
to be extended to enable reading an archived page. Equivalent
operations to Mk-stable and Hi-Stable, but now applicable
for LSS-H are also provided.

The mapping table needs to maintain information about
the location of the page. An entry in the mapping table can
point to a page in main memory, flash storage, or archive. The
mapping is to an address if the page is in main memory, to an
offset if it is in the current or historical storage. The type of
each mapping table entry is identified by a different tag in the
“ptr” field.

3) Migration: Migrating a page starts with a call from the
upper layers. Then a sequence of events follow for a successful
migration. These events are shown in Figure 4. The figure
shows the mapping table and the LSS-C and LSS-H. Also, it
shows the buffer for the archive. An entry for page P in the
mapping table points to the location of the page in either the
storage or the archive. The gray area in the LSS-C, LSS-H,
and archive buffer are filled with data while the white space
is empty or reclaimed in the case of the LSS-C. The sequence
of events to migrate the page P is:

1) The page P is read from LSS-C and a consolidated
representation of it is written to the LSS-H archive
buffer (Figure 4(a)). Requests will be serviced by the
page as it exists in LSS-C, as the archiving effort is
not yet visible. The LSS-C page P will not be garbage
collected because it can still be reached and seen as
active via the mapping table entry. At this point, a
crash will have no effect on the state as the content

PID ptr

p

LSS-C LSS-H

PID ptr

p

LSS-C LSS-H

PID ptr

p

LSS-C LSS-H

PID ptr

p

LSS-C LSS-H

p

(a) writing the page to the

 archive bu er
(b) The archive bu er is

 copied to LSS-H

(c) Change the page pointer to

 point to the historical copy

(d) The page pointer eventually

 persists in LSS-C

Fig. 4: A migration example. The solid line is a mapping table
pointer and dashed lines represent copying to another location.

of the archive buffer will be lost. However, the state
will continue with P being in LSS-C.

2) After the archive buffer is filled, its content is copied
to the LSS-H (Figure 4(b)). A crash after copying P
to the archive will cause the state after recovery to
continue with P in LSS-C, as the archiving process
remains invisible. However, the space occupied by
P in the archive will be wasted space and another
attempt to migrate P will occupy additional space.

3) P is now persistent in the archive. The process
that copied the buffer to the archive will update
the mapping table to point to the new location of
P (Figure 4(c)) in LSS-H with a new LSS-H flush
delta. This update is guaranteed to succeed since P
is a historical page and no further data updates are
performed on it.

4) The archival flush delta to P, which is now stable in
the archive, is eventually persisted by being flushed
to LSS-C (Figure 4(d)). After that, should an earlier
state of P in the LSS-C be examined for possible
garbage collection, like any other such page, the
garbage collector will check whether there is a stable
subsequent state for P. Once the archival flush delta
for P is stable, all prior states of P in the LSS-C can
be garbage collected. At this point, the migration of
P is complete and will survive system crashes.

C. Archive Garbage Collection

The archive contains only historical pages that are never
updated. This obliterates the need for LSS-H garbage collec-
tion since no space in the LSS-H can be reclaimed because
of subsequent updates. However, it can be desirable to allow
discarding data that exceeds an age threshold. In this case, the
space occupied by historical nodes can be reclaimed in the
LSS-H in a fairly simple circular fashion.

Each historical node is a result of a time split. The split time
represents an upper bound on the validity ranges of all record
versions in the page. A page in the archive can be reclaimed
if its split time is lower than the time threshold. To mark the
page for garbage collection we might set the pointer to that

page to null in the mapping table and use the null pointer to
“deter” the access. This “page update” in the mapping table,
like the pointer update for the page in the mapping table during
archiving, would enable garbage collection once the update is
stable in the LSS-C.

However, an access to an invalid page does not necessarily
need to access the mapping table to check whether a page id
has a null pointer. An access to such a page from the TSBw-
tree index can be aware of the age threshold. Then, accesses
to versions with lifetimes that end before the time threshold
are treated as invalid accesses. So all we would need to do is
set the threshold and examine it before making an access. This
has three advantages. (1) We do not need the mapping table
entry for the archive page to persist and serve as a “tombstone”
for an invalid page. Hence we can reclaim the mapping table
entry. (2) While we need to persist the threshold, that is global
information that can “invalidate” multiple pages. (3) Garbage
collection can simply advance by discarding all pages with
split times earlier than the threshold. And, because pages are
written to the archive in approximate timestamp order, it can
simply pause GC until every page that it encounters is garbage.

VI. PERFORMANCE

In this section, we evaluate the TSBw-tree by comparing
its performance to the Bw-tree. Our purpose is to illustrate
the performance difference incurred to maintain historical
versions. The effect of migration on the overall performance
is also examined by experiments enabling and disabling writes
to LSS-C and/or LSS-H.

A. Implementation and Setup

Implementation. LLAMA is written in C++ code and
consists of approximately 12,000 lines of code. The Bw-tree
is implemented on top of LLAMA with approximately 4,000
lines of code. The TSBw-tree is implemented by applying
the necessary changes and additions to an implementation of
the Bw-tree to support multi-versioning and migration. These
changes added approximately 4,000 lines of code. Performing
the CAS operations is done through the Windows Interlocked-
CompareExchange64.

Experiment machine. Our experiment machine is an Intel
Xeon W3550 (at 3.07 GHz) with 24 GB of RAM with a 160GB
Fusion IO flash SSD drive. The machine has four cores that
we hyperthread to eight in all of our experiments.

Workload. The experiments in this section are performed
with a synthetic workload. The size of keys and values is
8 bytes each. Prior to the experiment the index begins with
an initial population of 1M entries generated using a uniform
random distribution. The workload issues insert, update, and
read operations. The proportions of these operations are fixed
for each experiment. The workload for each experiment issues
a total of 10.24M operations.

Defaults. The workload is served by 8 worker threads
which is equivalent to the number of hyperthreads. The default
page size is 4KB. A time split is triggered if at least a third of
the page is comprised of historical records when the page is
full. Unless otherwise mentioned, data is written to flash and
migration is enabled. No garbage collection is performed on

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

0% 25% 50% 75% 100%

T
h
ro

u
g

h
p

u
t

(o
p

e
ra

ti
o
n

s
/s

)

Percentage of updates

Bw-tree
Ts-Bw-tree

Fig. 5: Performance overhead while varying the percentage of
updates in a workload with updates and inserts only

the archive. Page consolidations for both the TSBw-tree and
Bw-tree are done after ten or more deltas are prepended to a
base page.

B. TSBw-tree Performance

Updates to the TSBw-tree result in adding new versions
of existing records. This results in increasing the index size
since it indexes both current and historical records. A larger
index may lead to a performance penalty because of increased
pressure on the cache and, if the number of tree levels
increases, the need to traverse an extra node. However, the
interior nodes of the TSBw-tree are a very small fraction
(approximately 1%) of the overall file size, so the effect is
minor.

Additionally, a record is eventually written to the archive at
least once, as part of an archived page. However, it is possible
that it is written multiple times because a record might exist in
both the historical and current nodes after a split, thus leading
to more than one copy of the same version. There are other
sources of overhead in the TSBw-tree that affect performance
to a lesser degree. These include the overhead of manipulating
a compound key consisting of both a key and a timestamp. The
experiments described below show the cumulative performance
cost of supporting multi-versioned data.

1) Synthetic workload with no reads: The first set of
experiments run a workload that consists of inserts and updates
only, i.e., no read operations. The percentage of updates to
inserts is varied to shed light on the difference in cost between
updates in the TSBw-tree and the Bw-tree. Figure 5 plots the
results of these experiments for both the TSBw-tree and the
Bw-tree. The throughput in operations per seconds (ops/s) is
shown for different updates to inserts ratios.

Consider first the case of all inserts. The Bw-tree achieves
1.133M ops/s and the TSBw-tree achieves 91% of that value.
Here, the TSBw-tree is isolated from the write overhead caused
by historical records since no updates are performed. The
reported numbers differ because there is extra logic needed for
the TSBw-tree to check versions, and the versions themselves
have compound keys.

As the fraction of updates in the workload is increased, the
performance of the Bw-tree improves. A workload with half
updates and half inserts results in a throughput 9% higher than
the workload with all inserts. A scenario with only updates
achieves a throughput that is 40.9% higher than the scenario
with all inserts. Unlike inserts, updates in the Bw-tree do not
contribute to the size of the data and hence page splitting does
not occur. Inserts lead to an increase in the size of the data,
the more inserts the greater the index size. This explains the
performance decrease observed for the Bw-tree.

Increasing the fraction of updates to inserts in the TSBw-
tree leads to poorer performance as additional time splitting
introduces duplicate versions and these versions are archived.
The performance penalty for increasing updates from a work-
load with no updates to a workload with half updates and half
inserts is a decrease of 20.3%. This penalty is 45.9% when
going from a workload with all inserts to a workload with all
updates.

Workloads with a higher update ratio produce a greater
performance difference between the TSBw-tree and the Bw-
tree. The TSBw-tree achieves 87.3% of the throughput of the
Bw-tree for a workload with 25% updates. For the extreme
workload with all updates, the TSBw-tree’s throughput is
35.0% of that achieved by the Bw-tree.

2) Results Discussion: Here, we will focus our discussion
on two workloads, pure inserts and pure updates. The na-
ture of these pure workloads allows us to deduce interesting
information about the relative characteristics of the TSBw-
tree in comparison to the Bw-tree. These deductions are first
presented and then verified with the experimental results.

Pure inserts. A key characteristic of the workload with
pure inserts is that there are no historical records in the TSBw-
tree. All splits are key splits. The insert operations in this case
contribute to the index in an identical way for both the Bw-
tree and the TSBw-tree. This leads to the observation that the
number of key splits for both systems is similar. The Bw-tree
experienced 120353 key splits and the TSBw-tree experienced
120003; a difference that is less than 1%. No historical records
also means that nothing is written to the archive and that
each inserted record occurs only once in the tree, i.e., it is
not written again later to the archive. This is reflected by
the similar final LSS-C sizes of 598MB for the Bw-tree and
587MB for the TSBw-tree; a 2% difference1.

Pure updates. A pure update workload does not change
the Bw-tree size. On the other hand, the TSBw-tree creates
new versions of existing records and thus increases in size. A
sufficiently long experiment will observe almost all splits to be
time splits for the pure updates workload. The time split results
in two pages: a full historical page and a new current page two
thirds the size of a full page (the threshold for a time split is
filling at least one third of the page with historical records).
Thus, the time split will cause the historical full page to be
written to the archive. Also, it will cause the historical full
page and the new current page to be written to LSS-C. This
makes time splits write 1.66 pages in LSS-C for each page
written in LSS-H. To verify this we took the ratio of the size

1We controlled for key size by making the Bw-tree key size be equal to
compound key size used in the TSBw-tree. If we had not done that, the TSBw-
tree file would have been even larger than the Bw-tree file.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

0%/0% 10%/10% 30%/30% 50%/50%

T
h
ro

u
g

h
p

u
t

(o
p

e
ra

ti
o
n

s
/s

)

updates percentage/inserts percentage

Bw-tree
Ts-Bw-tree

Fig. 6: Performance overhead while varying the percentage of
updates and inserts

of LSS-C to the size of LSS-H. We subtracted the original
sizes of LSS-C and LSS-H that were present after we initially
populated the trees and before we ran the experiments for the
ratio calculation. The resulting size ratio of LSS-C to LSS-H
is 1.61.

3) Synthetic workload with reads: The workload used in
this second set of experiments consists of update, insert, and
read operations. For each experiment in the set the ratio
of updates is equal to the ratio of inserts. The rest of the
operations are reads. For example, a 20% updates/20% inserts
workload will consist of 60% read operations. We plot the
throughput in operations per second in Figure 6.

Consider first the read-only case. The throughput of the
TSBw-tree is 93.3% of that achieved by the Bw-tree. The
TSBw-tree reduced throughput is caused by the additional
logic and manipulation of a compound key. Introducing inserts
and updates to the workload with 10% each results in decreas-
ing the throughput by 36.5% for the Bw-tree and 34.3% for the
TSBw-tree. This performance hit is similar for both systems.
However, as the ratio of updates and inserts increase to 30%
and 50% each, the throughput of the TSBw-tree decreases
more rapidly than the Bw-tree. The throughput of the TSBw-
tree is 77.3% of the throughput of the Bw-tree for 30% updates
and inserts, decreasing even more for the half updates and half
inserts workload to 61.9%. The 50% experiment no longer
contains reads and produces, in Figure 6, the same result as
the 50% case in Figure 5. Essentially, we are simply seeing
the reads diluting the performance differences already revealed
in the initial experiment with no reads, with a slight variation
at the 10% case that might be due to caching effects between
reads and modification operations.

It should be noted that in the above results, we did not
exploit compression of the sort used in the Immortal DB
effort [19]. Immortal DB found that “delta” compression of
historical versions on a page basis, where the most recent
version on a page is uncompressed was highly effective for two
reasons: (1) it reduced the size of the data being stored, hence
reducing the index size as well; (2) it reduced the number of
page splits. This would go a long way toward shrinking the
throughput decline that we see with increased updates.

Scenario Throughput (Mops/s) Normalized
In-memory 2.47 1.00
Write to flash 2.17 0.88
Flash and archive 2.14 0.86

TABLE I: Overhead of persistence and archiving

4) Migration and Storage Costs: The experiments so far
were persisting the data in flash and migrating historical pages
to the archive. Now we examine the overhead of persistence
and migration to the performance of an in-memory TSBw-tree.
The TSBw-tree was run three times: (1) in-memory with no
persistence to flash and no migration; (2) with persistence to
flash but no migration; and (3) with both flash persistence and
migration. The workload used for this scenario consisted of
10% inserts, 10% updates, and 80% reads.

Table I shows the throughput in the three scenarios. The
rightmost column normalizes the throughput to the throughput
of the in-memory case. The in-memory TSBw-tree executes
at 2.47 million operations per second. Persisting data to flash
causes the throughput to decrease to 2.17 Mops/sec, 12% lower
than the in-memory case. Note that although migration is not
enabled, time splits still occur and the resulting historical pages
are written to LSS-C in addition to the current pages. When
migration is enabled the historical pages will be written to
LSS-C and to LSS-H (the archive). This leads to a throughput
of 2.14 Mops/sec. This is 86% of the throughput of the in-
memory case. Turning on archiving decreases the performance
by only 1.8% when compared to the case when data is persisted
to the flash.

This archiving overhead result is very re-assuring. It means
that removing historical pages from the current database essen-
tially preserves the indexing performance of the TSBw-tree.
And it makes it possible to move historical data to a lower
cost hard disk, and exploit flash storage for the current data.
This permits a much larger current database size to experience
the performance benefits of flash storage, and without giving
it back with overhead increases due to the archiving itself.
Further, an important rationale for archiving is to avoid having
to repeatedly need to re-write historical versions in LSS-C
during garbage collection. Migration succeeds in avoiding this
extra garbage collection while incurring only modest archiving
overhead.

VII. RELATED WORK

A. Temporal and Multi-version Databases

Support for temporal data became a mainstream database
research topic in 1987 with its inclusion as a fundamental
feature of Postgres [29], [30]. In Postgres, records are times-
tamped with clock time and reflect the serialization order
of transactions. A B+-tree maintains current records, with
historical records moved from the current B+-tree to a sep-
arate access structure via a background “vacuuming” process.
An R-tree [8] is responsible for indexing historical records.
Managing historical records in an R-tree was a bit awkward,
and querying frequently required access to both current and
historical indexes.

In the early 80’s, coincident with database research com-
munity temporal interest, multi-version support began to ap-

pear in commercial databases. Oracle was an early supporter
of multi-version concurrency control, supporting an isolation
level now referred to as snapshot isolation. This introduced
transient versions that permitted much greater concurrency
by removing read-write conflicts, at the sacrifice of strictly
serializable execution. DEC (now owned by Oracle) Rdb [9]
introduced transient versioning to support read-only transac-
tions, which could execute without interfering with current
serializable updates.

While commercial systems started with transient versions
restricted to enhancing concurrency, this evolved into more
persistent versioning with more explicit temporal support.
FlashBack [1] is the name of the transaction time functionality
that was announced with Oracle 9i and extended in Oracle 10g.
It allows accessing previous states in the database. Point-in-
time recovery is supported by rolling back to a previous state
prior to bad transactions. Historical records are not part of the
index structure. This makes any access to historical data pass
through the current versions first and then travel backward in
time.

B. Temporal and Multi-version Indexing

Indexing of multi-version data began in the mid 1980’s, as a
matter of necessity. The write-once B-tree (WOB-tree) [6] was
designed to store data on Write-Once Read-Many (WORM)
optical disks. The WOB-tree indexes both the keys and the
versions. It does both key splits and time splits. Because of the
write-once media, it is the current data that must be relocated
during a time split. Time splits permit the writing of new data
to current nodes. A by-product of this is to keep the current
data in a small number of nodes, allowing more efficient access
to them. The multiversion B+tree [4], which is similar, also
moves current data during its time split, which is done in such
a way as to guarantee a lower bound on page utilization for
any time-slice it stores.

The TSB-tree [22] is designed to exploit high performance
storage for current data and cheaper, perhaps less performant
storage for historical data. Thus, the TSB-tree migrates histor-
ical records to the less expensive storage medium. This is done
by its time split, which moves historical data to a new page.
The major difficulty with the TSB-tree is that the historical
part of a current page is relocated, and the historical index
term produced during the splitting of a current page requires
updating. Thus any historical index page (produced as a result
of time splitting an index page) must not include current index
terms if it is to keep historical pages read-only. The TSBw-tree
avoids this complication because it relocates historical pages
without changing their index terms.

C. Exploiting Modern Hardware

Starting with AlphaSort [25] the database community has
increasingly paid attention to the characteristics of modern
hardware, initially the memory hierarchy, then in the past
several years, to multi-core processors and flash storage. A
new collection of techniques were developed to improve the
performance of database systems. An interesting characteristic
of focus on performance is that to achieve really big gains
requires looking at the entire software stack, from user input
through processors and memory hierarchies to secondary stor-
age.

Much of the performance work was in the context of main
memory database systems [11], [13], [26], and it has very
quickly been adopted in commercial database products [5], [7],
[31]. A focus of this work was on removing latch overhead,
done mostly by partitioning the data such that only a single
thread would access data. Hekaton was unique in adopting
multi-threading latch-free technology, and the Bw-tree [18]
was the key range index used in Hekaton.

Another area pursued in the quest for higher performance
was exploiting flash storage as the stable storage medium.
Because flash requires erasing before write and is wear limited,
flash vendors supply a flash translation layer (FTL) to relocate
and spread writes over the raw storage. To cope with the
characteristics of flash, techniques like “in page logging” [14],
parallelism within the flash technique have been introduced.
Finally, even though the FTL usually uses log structured
techniques, LLAMA [16] have found that “application level”
log structuring has a big performance payoff.

It is LLAMA, with its latch-free approach, coupled with its
log structuring of storage that are the enablers for the TSBw-
tree’s great performance.

VIII. CONCLUSION

We have designed and implemented the TSBw-tree, a
temporal index with higher performance than has been reported
elsewhere. The techniques that we used demonstrate that
temporal indexing can be done effectively at very high perfor-
mance. The TSBw-tree owes this performance to its exploita-
tion of LLAMA, the latch-free, log structured cache/storage
subsystem [16] that has been used previously in support of
the Bw-tree.

Our implementation of the TSBw-tree required us to build
technology to deal with a number of issues.

1) To migrate historical data, as done with the TSB-
tree, we enhanced LLAMA functionality to include
a migration capability. This permitted us to exploit
inexpensive media (e.g. disks) for cold historical data
while exploiting high performance media (e.g. flash)
for hot current data.

2) Migration further solved a problem observed origi-
nally in LFS [27], i.e. that cleaning efficiency can
be a substantial cost if data is not partitioned. Thus,
cleaning efficiency is greatly enhanced when cold
data (in an update sense) is separated from hot data.

3) We further sketched a way in which it is possible
to “clean” the archive very efficiently when the old-
est parts of it are no longer needed. This cleaning
required merely dropping, in a careful manner, his-
torical pages containing data that is no longer needed.

4) Because LLAMA has been structured to maximize
concurrent execution, it is essential to handle time
splits concurrently with on-going updating. This led
us to exercise great care in choosing timestamps for
time splits, so as to ensure that the historical page
never needed further updating.

In building the TSBw-tree on top of LLAMA, we achieved
great performance, while simultaneously solving a TSB-tree
problem caused by the moving of historical nodes. Using

LLAMA meant that we could move historical pages without
changing their index terms, due to the relocation possible
through the indirection enabled by LLAMA’s mapping table.

Finally, our TSBw-tree implementation is like a first ver-
sion of a product. There are ways to further enhance both
its performance and its storage efficiency. The “low hanging
fruit” is to exploit the historical version compression technique
used in Immortal DB [19]. This reduces the storage footprint
of historical data, and improves performance by reducing,
especially in a high update setting, the number of time splits
needed to accommodate historical versions.

REFERENCES

[1] Oracle Flashback Technology. http://www.oracle.com/technology/
deploy/availability/htdocs/Flashback Overview.htm, 2005.

[2] Oracle Total Recall. http://www.oracle.com/technology/products/
database/oracle11g/pdf/flashback-data-archive-whitepaper.pdf, 2008.

[3] R. Agrawal, R. J. B. Jr., C. Faloutsos, J. Kiernan, R. Rantzau, and
R. Srikant. Auditing compliance with a hippocratic database. In VLDB,
pages 516–527, 2004.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An
asymptotically optimal multiversion b-tree. In VLDB, volume 5, pages
264–275, 1996.

[5] C. Diaconu, C. Freedman, E. Ismert, P.-A. Larson, P. Mittal, R. Stoneci-
pher, N. Verma, and M. Zwilling. Hekaton: Sql server’s memory-
optimized oltp engine. In SIGMOD, pages 1243–1254. ACM, 2013.

[6] M. C. Easton. Key-sequence data sets on indelible storage. IBM Journal
of Research and Development, 30(3):230–241, 1986.

[7] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner.
Sap hana database: data management for modern business applications.
SIGMOD Record, 40(4):45–51, 2011.

[8] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pages 47–57. ACM, 1984.

[9] L. Hobbs, I. Smith, and K. England. Rdb: a comprehensive guide.
Digital Press, 1999.

[10] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE
Trans. Knowl. Data Eng., 11(1):36–44, 1999.

[11] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. B. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi. H-store: a high-performance, distributed main memory
transaction processing system. PVLDB, 1(2):1496–1499, 2008.

[12] A. Kemper and T. Neumann. Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots. In ICDE, pages
195–206. IEEE, 2011.

[13] A. Kemper and T. Neumann. Main-memory database systems. In ICDE,
pages 1310–1310. IEEE, 2014.

[14] S.-W. Lee and B. Moon. Transactional in-page logging for multiversion
read consistency and recovery. In ICDE, pages 876–887. IEEE, 2011.

[15] P. L. Lehman et al. Efficient locking for concurrent operations on b-
trees. ACM TODS, 6(4):650–670, 1981.

[16] J. Levandoski, D. Lomet, and S. Sengupta. Llama: A cache/storage
subsystem for modern hardware. VLDB, 6(10):877–888, 2013.

[17] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao. Deuteron-
omy: Transaction support for cloud data. In CIDR, volume 11, pages
123–133, 2011.

[18] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The bw-tree: A b-tree
for new hardware platforms. In ICDE, pages 302–313. IEEE, 2013.

[19] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and Y. Zhu.
Immortal db: transaction time support for sql server. In ACM SIGMOD,
pages 939–941, 2005.

[20] D. Lomet, Z. Vagena, and R. Barga. Recovery from bad user transac-
tions. In ACM SIGMOD, pages 337–346, 2006.

[21] D. B. Lomet, R. S. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu. Transaction time support inside a database engine. In ICDE,
page 35, 2006.

[22] D. B. Lomet and B. Salzberg. Access methods for multiversion data.
In ACM SIGMOD, pages 315–324, 1989.

[23] S. Mitra, M. Winslett, R. T. Snodgrass, S. Yaduvanshi, and S. Ambokar.
An architecture for regulatory compliant database management. In
ICDE, pages 162–173, 2009.

[24] C. Mohan and F. E. Levine. Aries/im: An efficient and high concur-
rency index management method using write-ahead logging. In ACM
SIGMOD, pages 371–380, 1992.

[25] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. Alphasort:
A risc machine sort. In SIGMOD, pages 233–242, 1994.

[26] I. Pandis, P. Tözün, R. Johnson, and A. Ailamaki. Plp: page latch-free
shared-everything oltp. VLDB, 4(10):610–621, 2011.

[27] M. Rosenblum and J. K. Ousterhout. The design and implementation
of a log-structured file system. ACM TOCS, 10(1):26–52, 1992.

[28] R. T. Snodgrass. The temporal query language tquel. In PODS, pages
204–213, 1984.

[29] M. Stonebraker. The design of the postgres storage system. In VLDB,
pages 289–300, 1987.

[30] M. Stonebraker, L. A. Rowe, and M. Hirohama. The implementation
of postgres. IEEE Trans. Knowl. Data Eng., 2(1):125–142, 1990.

[31] M. Stonebraker and A. Weisberg. The voltdb main memory dbms. IEEE
Data Eng. Bull., 36(2):21–27, 2013.

